answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
boyakko [2]
2 years ago
12

A DJ starts up her phonograph player. The turntable accelerates uniformly from rest, and takes t1 = 11.9 seconds to get up to it

s full speed of f1 = 78 revolutions per minute.
Case 2: The DJ then changes the speed of the turntable from f1 = 78 to f2 = 120 revolutions per minute. She notices that the turntable rotates exactly n2= 11 times while accelerating uniformly.

t1 = 11.9 seconds
n2 = 11 times

Part (a) Calculate the angular speed of the turntable while it is turning at f1 = 78 in radians/second in Case 1.

Part (b) How many revolutions does the turntable make while accelerating in Case 1?
Part (c) Calculate the magnitude of the angular acceleration of the turntable in Case 1, in radians/second2.
Part (d) Calculate the magnitude of the angular acceleration of the turntable (in radians/second2) while increasing to 120 RPM (Case 2).
Part (e) How long (in seconds) does it take for the turntable to go from f1 = 78 to f2 = 120 RPM?
Physics
1 answer:
Degger [83]2 years ago
4 0

Answer:

a)\omega_1=8.168\,rad.s^{-1}

b)n_1=7.735 \,rev

c)\alpha_1 =0.6864\,rad.s^{-2}

d)\alpha_2=4.1454\,rad.s^{-2}

e)t_2=1.061\,s

Explanation:

Given that:

  • initial speed of turntable, N_0=0\,rpm\Rightarrow \omega_0=0\,rad.s^{-1}
  • full speed of rotation, N_1=78 \,rpm\Rightarrow \omega_1=\frac{78\times 2\pi}{60}=8.168\,rad.s^{-1}
  • time taken to reach full speed from rest, t_1=11.9\,s
  • final speed after the change,  N_2=120\,rpm\Rightarrow \omega_2=\frac{120\times 2\pi}{60}=12.5664\,rad.s^{-1}
  • no. of revolutions made to reach the new final speed,  n_2=11\,rev

(a)

∵ 1 rev = 2π radians

∴ angular speed ω:

\omega=\frac{2\pi.N}{60}\, rad.s^{-1}

where N = angular speed in rpm.

putting the respective values from case 1 we've

\omega_1=\frac{2\pi\times 78}{60}\, rad.s^{-1}

\omega_1=8.168\,rad.s^{-1}

(c)

using the equation of motion:

\omega_1=\omega_0+\alpha . t_1

here α is the angular acceleration

78=0+\alpha_1\times 11.9

\alpha_1 = \frac{8.168 }{11.9}

\alpha_1 =0.6864\,rad.s^{-2}

(b)

using the equation of motion:

\omega_1\,^2=\omega_0\,^2+2.\alpha_1 .n_1

8.168^2=0^2+2\times 0.6864\times n_1

n_1=48.6003\,rad

n_1=\frac{48.6003}{2\pi}

n_1=7.735\, rev

(d)

using equation of motion:

\omega_2\,^2=\omega_1\,^2+2.\alpha_2 .n_2

12.5664^2=8.168^2+2\alpha_2\times 11

\alpha_2=4.1454\,rad.s^{-2}

(e)

using the equation of motion:

\omega_2=\omega_1+\alpha_2 . t_2

12.5664=8.168+4.1454\times t_2

t_2=1.061\,s

You might be interested in
If a freely suspended vertical spring is pulled in downward direction and then released, which type of wave is produced in the s
larisa [96]

Answer:

longitudinal wave

Explanation:

it is perpendicular to the direction of the wave

3 0
2 years ago
Read 2 more answers
A tennis ball bounces on the floor three times. If each time it loses 22.0% of its energy due to heating, how high does it rise
lesya692 [45]

Answer:

H = 109.14 cm

Explanation:

given,                                                            

Assume ,                                                            

Total energy be equal to 1 unit                                

Balance of energy after first collision = 0.78 x 1 unit

                                                             = 0.78 unit

Balance after second collision = 0.78 ^2 unit

                                                   = 0.6084 unit

Balance after third collision = 0.78 ^3 unit

                                              = 0.475 unit

height achieved by the third collision will be equal to energy remained                                        

H be the height achieved after 3 collision

0.475 ( m g h) = m g H                  

H = 0.475 x h                                    

H = 0.475 x 2.3 m                          

H = 1.0914 m                      

H = 109.14 cm                      

6 0
2 years ago
Length of two cylinders are measured to be L1 = 5.62 +/- 0.01cm and L2 = 4.34 +/- 0.02cm.
zavuch27 [327]

Answer:

Explanation:

Just look at the figure

7 0
2 years ago
The force F required to compress a spring a distance x is given by F 2 F0 5 kx where k is the spring constant and F0 is the prel
IrinaVladis [17]

Answer:

a)W=8.333lbf.ft

b)W=0.0107 Btu.

Explanation:

<u>Complete question</u>

The force F required to compress a spring a distance x is given by F– F0 = kx where k is the spring constant and F0 is the preload. Determine the work required to compress a spring whose spring constant is k= 200 lbf/in a distance of one inch starting from its free length where F0 = 0 lbf. Express your answer in both lbf-ft and Btu.

Solution

Preload = F₀=0 lbf

Spring constant k= 200 lbf/in

Initial length of spring x₁=0

Final length of spring x₂= 1 in

At any point, the force during deflection of a spring is given by;

F= F₀× kx  where F₀ initial force, k is spring constant and x is the deflection from original point of the spring.

W=\int\limits^2_1 {} \, Fds \\\\\\W=\int\limits^2_1( {F_0+kx} \,) dx \\\\\\W=\int\limits^a_b {kx} \, dx ; F_0=0\\\\\\W=k\int\limits^2_1 {x} \, dx \\\\\\W=k*\frac{1}{2} (x_2^{2}-x_1^{2}  )\\\\\\W=200*\frac{1}{2} (1^2-0)\\\\\\W=100.lbf.in\\\\

Change to lbf.ft by dividing the value by 12 because 1ft=12 in

100/12 = 8.333 lbf.ft

work required to compress the spring, W=8.333lbf.ft

The work required to compress the spring in Btu will be;

1 Btu= 778 lbf.ft

?= 8.333 lbf.ft----------------cross multiply

(8.333*1)/ 778 =0.0107 Btu.

6 0
2 years ago
A girl rolls a ball up an incline and allows it to return to her. For the angle ! and ball involved, the acceleration of the bal
Musya8 [376]

Answer:

The distance the ball moves up the incline before reversing its direction is 3.2653 m.

The total time required for the ball to return to the child’s hand is 3.2654 s.

Explanation:

When the girl is moving up:

The final velocity (v) = 0 m/s

Initial velocity (u) = 4 m/s

a = -0.25g = -0.25*9.8 = -2.45 m/s². (Negative because it is in opposite of the velocity and also it deaccelerates while going up).

Let time be t  to reach the top.

Using

v = u + a×t

0 = 4 - 2.45*t

t = 1.6327 s

Since, this is the same time the ball will come back. So,

<u>Total time to go and come back = 2* 1.6327 = 3.2654 s </u>

To find the distance, using:

v² = u² + 2×a×s

0² = 4² + 2×(-2.45)×s

s = 3.2653 m

<u>Thus, the distance the ball moves up the incline before reversing its direction is 3.2653 m.</u>

5 0
2 years ago
Other questions:
  • How high above the earth's surface is g reduced to 8.80m/^2?
    12·2 answers
  • A runner runs around the track consisting of two parallel lines 96 m long connected at the ends by two semi circles with a radiu
    9·1 answer
  • When boating in shallow areas or seagrass beds, you see a mud trail in your wake where your boat has churned up the bottom. If y
    5·1 answer
  • A bowling ball of mass m=1.7kg is launched from a spring compressed by a distance d=0.31m at an angle of theta=37 measured from
    12·1 answer
  • A skier is moving down a snowy hill with an acceleration of 0.40 m/s2. The angle of the slope is 5.0∘ to the horizontal. What is
    12·1 answer
  • A child pushes a 75 N toy car across the floor. What is the mass of the car?
    6·1 answer
  • The specific heat of substance A is greater than that of substance B. Both A and B are at the same initial temperature when equa
    9·1 answer
  • The position of a particle moving along the x-axis varies with time according to x(t) = 5.0t^2 − 4.0t^3 m. Find (a) the velocity
    15·1 answer
  • When Brett and Will ride the​ carousel, Brett always selects a horse on the outside​ row, whereas Will prefers the row closest t
    7·1 answer
  • Bill drives and sees a red light. He slows down to a stop. A graph of his velocity over time is shown below.
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!