<span>With algebraic expressions, you can’t add and subtract any terms like you can add and subtract numbers. Terms must be like terms in order to combine them. So, you can’t always simplify an algebraic expression by following the order of operations. You have to use the distributive property to rewrite the expression and then combine like terms to simplify. With numeric expressions, you can either simplify inside the parentheses first or use the distributive property first.</span>
Answer: $680.00
Step-by-step explanation:
Principal= 8500
Rate= 4%
Time= 2 years
Interest= (Principal×Rate×Time)/100
= (8500×4×2)/100
= 68000/100
= $680
The interest is $680
Answer:
1627190
Step-by-step explanation:
(see attached for reference)
Given the number 1627187, we can see that the number in the tens place is the number 8.
How we round this depends on the number immediately to the right of this number. (i.e the digit in the ones place)
Case 1: If the digit in the ones place is less less than 5, then the number in the tens place remains the same and replace all the digits to its right with zeros
Case 2: If the digit in the ones places is 5 or greater, then we increase the digit in the tens place and replace all the digits to its right with zeros.
In our case, the digit in the ones places is 7, this greater than 5, hence according to Case 2 above, we increase the digit in the tens place by one (from 8 to 9) and replace all the digits to its right by zeros giving us:
1627190
A(bx − c) ≥ bc, implies (bx − c) ≥ bc /a and then bx ≥ bc/a + c, x<span>≥ c/a +c/b
so the solution is </span><span>3. [c/a + c/b, infinity)</span>
The volume of a sphere is given by:

So, we need to deduct this equation. We will walk through Calculus on the concept of a solid of revolution that is a solid figure that is obtained by rotating a plane curve around some straight line (the axis of revolution<span>) that lies on the same plane. We know from calculus that:
</span>
![V=\pi \int_{a}^{b}[f(x)]^{2}dx](https://tex.z-dn.net/?f=V%3D%5Cpi%20%5Cint_%7Ba%7D%5E%7Bb%7D%5Bf%28x%29%5D%5E%7B2%7Ddx)
<span>
Then, according to the concept of solid of revolution we are going to rotate a circumference shown in the figure, then:
</span>

<span>
Isolationg y:
</span>

<span>
So,
</span>

<span>
</span>
![V=\pi \int_{a}^{b}[\sqrt{r^{2}-x^{2}}]^{2}dx](https://tex.z-dn.net/?f=V%3D%5Cpi%20%5Cint_%7Ba%7D%5E%7Bb%7D%5B%5Csqrt%7Br%5E%7B2%7D-x%5E%7B2%7D%7D%5D%5E%7B2%7Ddx)
<span>
</span>

<span>
being -r and r the limits of this integral.
</span>

<span>
Solving:
</span>
![V=\pi[r^{2}x-\frac{x^{3}}{3}]\right|_{-r}^{r}](https://tex.z-dn.net/?f=V%3D%5Cpi%5Br%5E%7B2%7Dx-%5Cfrac%7Bx%5E%7B3%7D%7D%7B3%7D%5D%5Cright%7C_%7B-r%7D%5E%7Br%7D)
Finally:
<span>
</span>

<span>
</span><span>
</span>