<u>ANSWER</u>
![\sqrt[3]{- 729{a}^{9} {b}^{6} } = - 9 {a}^{3} {b}^{2}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B-%20729%7Ba%7D%5E%7B9%7D%20%20%7Bb%7D%5E%7B6%7D%20%7D%20%20%3D%20%20-%209%20%7Ba%7D%5E%7B3%7D%20%7Bb%7D%5E%7B2%7D%20)
<u>EXPLANATION</u>
We want to find the cube root of

We express this symbolically as:
![\sqrt[3]{- 729 {a}^{9} {b}^{6} }](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B-%20729%20%7Ba%7D%5E%7B9%7D%20%20%7Bb%7D%5E%7B6%7D%20%7D%20)
The expression under the radical called the radicand.
We need to express this radical in exponential form using the property,
![{x}^{ \frac{m}{n} } = \sqrt[n]{ {x}^{m} }](https://tex.z-dn.net/?f=%20%7Bx%7D%5E%7B%20%5Cfrac%7Bm%7D%7Bn%7D%20%7D%20%20%3D%20%20%5Csqrt%5Bn%5D%7B%20%7Bx%7D%5E%7Bm%7D%20%7D%20)
Applying this rule gives us:
![\sqrt[3]{- 729 {a}^{9} {b}^{6} } = ({- 729 {a}^{9} {b}^{6}})^{ \frac{1}{3} }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B-%20729%20%7Ba%7D%5E%7B9%7D%20%20%7Bb%7D%5E%7B6%7D%20%7D%20%20%3D%20%20%28%7B-%20729%20%7Ba%7D%5E%7B9%7D%20%20%7Bb%7D%5E%7B6%7D%7D%29%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20)
![\sqrt[3]{- 729{a}^{9} {b}^{6} } = ({- {9}^{3} {a}^{9} {b}^{6}})^{ \frac{1}{3} }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B-%20729%7Ba%7D%5E%7B9%7D%20%20%7Bb%7D%5E%7B6%7D%20%7D%20%20%3D%20%20%28%7B-%20%7B9%7D%5E%7B3%7D%20%20%7Ba%7D%5E%7B9%7D%20%20%7Bb%7D%5E%7B6%7D%7D%29%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20)
Recall that

We apply this rule on the RHS to get,
![\sqrt[3]{- 729{a}^{9} {b}^{6} } = ({- {9}^{3 \times { \frac{1}{3} } } {a}^{9 \times { \frac{1}{3} } } {b}^{6 \times { \frac{1}{3} } }})](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B-%20729%7Ba%7D%5E%7B9%7D%20%20%7Bb%7D%5E%7B6%7D%20%7D%20%20%3D%20%20%28%7B-%20%7B9%7D%5E%7B3%20%5Ctimes%20%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%7D%20%20%7Ba%7D%5E%7B9%20%5Ctimes%20%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%7D%20%20%7Bb%7D%5E%7B6%20%5Ctimes%20%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%7D%7D%29)
This simplifies to
![\sqrt[3]{- 729{a}^{9} {b}^{6} } = - 9 {a}^{3} {b}^{2}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B-%20729%7Ba%7D%5E%7B9%7D%20%20%7Bb%7D%5E%7B6%7D%20%7D%20%20%3D%20%20-%209%20%7Ba%7D%5E%7B3%7D%20%7Bb%7D%5E%7B2%7D%20)
Answer: 0.1289
Step-by-step explanation:
Given : The proportion of all students at a large university are absent on Mondays. : 
Sample size : 
Mean : 
Standard deviation = 

Let x be a binomial variable.
Using the standard normal distribution table ,
(1)
Z score fro normal distribution:-

For x=4

For x=3

Then , from (1)
Hence, the probability that four students are absent = 
About 4,934 people.
12,250 × 145
1,776,250 ÷ 360
= 4,934.02777...
Let x represent the number of type A table and y represent the number of type B tables.
Minimize: C = 265x + 100y
Subject to: x + y ≤ 40
25x + 13y ≥ 760
x ≥ 1, y ≥ 1
From, the graph the corner points are (20, 20), (39, 1), (30, 1)
For (20, 20): C = 265(20) + 100(20) = $7,300
For (39, 1): C = 265(39) + 100 = $10,435
For (30, 1): C = 265(30) + 100 = $8,050
Therefore, for minimum cost, 20 of type A and 20 of type B should be ordered.
Opposite angles formed by two intersecting lines are equal, so angle 1 is the same as angle 4. That means angle 1 = angle 5 as well.
<span>When a line intersects two parallel lines, the corresponding angles are equal. That is, if r and s are parallel, then the angles formed when l intersects r are the same s the angles formed when l intersects s. Angle 1 = Angle 5, Angle 2 = Angle 6, and so forth. Since we know angle 1 = angle 5, so from that you can see that r and s are parallel</span>