Answer:
<h3>AC=96 units.</h3>
Step-by-step explanation:
We are given a parallelogram ABCD with diagonals AC and BD intersect at point E.
, and CE=6x .
<em>Note: The diagonals of a parallelogram intersects at mid-point.</em>
Therefore, AE = EC.
Plugging expressions for AE and EC, we get

Subtracting 6x from both sides, we get


Factoriong quadratic by product sum rule.
We need to find the factors of -16 that add upto -6.
-16 has factors -8 and +2 that add upto -6.
Therefore, factor of
quadratic is (x-8)(x+2)=0
Setting each factor equal to 0 and solve for x.
x-8=0 => x=8
x+2=0 => x=-2.
We can't take x=-2 as it's a negative number.
Therefore, plugging x=8 in EC =6x, we get
EC = 6(8) = 48.
<h3>AC = AE + EC = 48+48 =96 units.</h3>
I think that it's TRUE because it is in the middle when you draw the segment out
Answer:
177 $
Step-by-step explanation:
20 x8 = 160
3x3= 9
4x2=8
8+9+160= 177
<span>Find
the number of columns and rows of the cupcake in a rectangle shape with 120
pieces.
=> The row must ne even and the column must be add
=> 120 = 2 x 2 x 2 x 15
=> 120 = 8 x 15
=> 120 = 120
Thus, the glee club will need to arrange the row of the rectangle shaped
cupcake as 8 rows and the column as 15
columns.
That gets the total of 120 cupcakes in all.
</span>
If we let x as candy A
y as candy B
a as dark chocolate in candy a
b as dark chocolate in candy b
c as caramel
d as walnut
P as profit
we have the equations:
a + c = x
2b + d = y
a + 2b ≤ 360
c ≤ 430
d ≤ 210
P = 285x + 260y
This is an optimization problem which involves linear programming. It can be solved by graphical method or by algebraic solution.
P = 285(a + c) + 260(2b +d)
If we assume a = b
Then a = 120, 2b = 240
P = 285(120 + 120) + 260(240 + 120)
P = 162000
candy A should be = 240
candy B should be = 360