Answer:
A) 12.08 m/s
B) 19.39 m/s
Explanation:
A) Down the hill, we will apply Newton’s second law of motion in the downward direction to get:
mg(sinθ) – F_k = ma
Where; F_k is frictional force due to kinetic friction given by the formula;
F_k = (μ_k) × F_n
F_n is normal force given by mgcosθ
Thus;
F_k = μ_k(mg cosθ)
We now have;
mg(sinθ) – μ_k(mg cosθ) = ma
Dividing through by m to get;
g(sinθ) – μ_k(g cosθ) = a
a = 9.8(sin 12.03) - 0.6(9.8 × cos 12.03)
a = -3.71 m/s²
We are told that distance d = 24.0 m and v_o = 18 m/s
Using newton's 3rd equation of motion, we have;
v = √(v_o² + 2ad)
v = √(18² + (2 × -3.71 × 24))
v = 12.08 m/s
B) Now, μ_k = 0.10
Thus;
a = 9.8(sin 12.03) - 0.1(9.8 × cos 12.03)
a = 1.08 m/s²
Using newton's 3rd equation of motion, we have;
v = √(v_o + 2ad)
v = √(18² + (2 × 1.08 × 24))
v = 19.39 m/s
I am assuming this is a true or false question, to which the answer would be True.
We solve this using special
relativity. Special relativity actually places the relativistic mass to be the
rest mass factored by a constant "gamma". The gamma is equal to 1/sqrt
(1 - (v/c)^2). <span>
We want a ratio of 3000000 to 1, or 3 million to 1.
</span>
<span>Therefore:
3E6 = 1/sqrt (1 - (v/c)^2)
1 - (v/c)^2 = (0.000000333)^2
0.99999999999999 = (v/c)^2
0.99999999999999 = v/c
<span>v= 99.999999999999% of the speed of light ~ speed of light
<span>v = 3 x 10^8 m/s</span></span></span>
Answer:
1320336992.2512 m²
1320.33 kilometers or 509.79 miles
Explanation:
Energy transferred by the sun

Energy required by the United States is
(assumed)
Power

Area

Area of the solar collector would be 1320336992.2512 m²
Converting to km²


Converting to mi²


Each side of the square would be 1320.33 kilometers or 509.79 miles
Thank you for posting your question here at brainly. Below is the answer:
sum of Mc = 0 = -Ay(4.2 + 3cos(59)) + (275)(2.1 + 3cos(59)) + M
<span>- Ay = (M + (275*(2.1 + 3cos(59)))/(4.2 + 3cos(59)) </span>
<span>sum of Ma = 0 = (-275)(2.1) - Cy(4.2 + 3cos(59)) + M </span>
<span>- Cy = (M - (275*2.1))/(4.2 + 3cos(59)) </span>
<span>Ay + Cy = 275 = ((M+1002.41)+(M-577.5))/(5.745) </span>
<span>= (2M + 424.91)/(5.745) </span>
<span>M = ((275*5.745) - 424.91)/2 </span>
<span>= 577.483 which rounds off to 577 </span>
<span>Is it maybe supposed to be Ay - Cy = 275</span>