<u>Full Question:</u>
The list below includes some of the properties of butane, a common fuel. Identify the chemical properties in the list. Check all of the boxes that apply.
denser than water
burns readily in air
boiling point of –1.1°C
odorless
does not react with water
burns readily in air
does not react with water
<h3><u>
Explanation:</u></h3>
The type of alkane that is used in many products includes Butane. It is found as a natural gas in the environment. It is found on the deeper part of ground. It can be obtained by drilling process and gets used up in many of the products that is used for commercial purposes.
Molecular mass that is associated with butane is 58.12 g/mol. The boiling point of butane is -1 degree Celsius and -140 degree Celsius is its melting point. It is a liquefied gas and does not react with water. It will burn in air more readily.
Answer:2.86x10^-7m
Explanation:E=hc/^
E=6.94x10^-19J
c = 2.9979x10^8m/s
h= 6.626x10^-34Js
^ =( 6.626x10^-34)x( 2.9979x 10^8)/ 6.94x10^-19
= 2.86x10^-7m
When it goes bioom bing bong bang pew pew pew yeauae right?
Coulomb's law mathematically is:
F = kQ₁Q₂/r²
we integrate this with respect to distance to obtain the expression for energy:
E = kQ₁Q₂/r; where k is the Coulomb's constant = 9 x 10⁹; Q are the charges, r is the seperation
Charge on proton = charge on electron = 1.6 x 10⁻¹⁹ C
E = (9 x 10⁹ x 1.6 x 10⁻¹⁹ x 1.6 x 10⁻¹⁹) / (185 x 10⁻¹²)
E = 1.24 x 10⁻¹⁸ Joules per proton/electron pair
Number of pairs in one mole = 6.02 x 10²³
Energy = 6.02 x 10²³ x 1.24 x 10⁻¹⁸
= 746.5 kJ
Answer:


Explanation:
Hello,
At first, it turns out convenient to compute the total moles of sodium that will be dissolved into the solution by considering the added amounts of sodium bromide and sodium sulfate:

Once we've got the moles we compute the final volume via:

Thus, the molarity of the sodium atoms turn out into:

Now, we perform the same procedure but now for the bromide ions:

Finally, its molarity results:

Best regards.