answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
goldenfox [79]
2 years ago
6

Given the connection between Aw and K (Aw=2k) could you use the ideal gas law and derive the Boltzmann constant. Water freezes a

t 546.3 Aw and absolute zero is at 0 Aw. (Aw is an arbitrary temperature scale.
Chemistry
2 answers:
ch4aika [34]2 years ago
8 0

well i know this its easy this will be creepa awww mannnn just kiding it will be 4

Elena L [17]2 years ago
7 0

Answer:

Explanation:

The relation between new scale and absolute temperature scale is given as follows

Aw = 2 K

for K = 273.15 ( freezing point of water at absolute scale )

Aw = 2 x 273.15 = 546.3 K

So each division of new scale is half the each division of absolute scale

each division of new scale is small .

The value of R  = 8.314 J per mole per K

Here per K is equivalent to 2Aw

So the vale of R in new scale = 8.314/2 J per mole per Aw

=  4.157 J per mole per Aw

k = R / N

= 4.157 / 6.02 x 10²³

= .69 x 10⁻²³

= 6.9 x 10⁻²⁴ J per molecule per Aw .

You might be interested in
What is the difference between calorie and Calorie?
Blababa [14]

What is the difference between calories and kilocalories? The "calorie" we refer to in food is actually kilocalorie. One (1) kilocalorie is the same as one (1) Calorie (upper case C). A kilocalorie is the amount of heat required to raise the temperature of 1 kilogram of water one degree Celsius.

5 0
2 years ago
Gasoline is a mixture of hydrocarbons, a major component of which is octane, CH3CH2CH2CH2CH2CH2CH2CH3. Octane has a vapor pressu
Nitella [24]

Answer:

\Delta \:H_{vap}=40383.88\ J/mol

Explanation:

The expression for Clausius-Clapeyron Equation is shown below as:

\ln P = \dfrac{-\Delta{H_{vap}}}{RT} + c

Where,  

P is the vapor pressure

ΔHvap  is the Enthalpy of Vaporization

R is the gas constant (8.314×10⁻³ kJ /mol K)

c is the constant.

For two situations and phases, the equation becomes:

\ln \left( \dfrac{P_1}{P_2} \right) = \dfrac{\Delta H_{vap}}{R} \left( \dfrac{1}{T_2}- \dfrac{1}{T_1} \right)

Given:

P_1 = 13.95 torr

P_2 = 144.78 torr

T_1 = 25°C

The conversion of T( °C) to T(K) is shown below:

T(K) = T( °C) + 273.15  

So,  

T = (25 + 273.15) K = 298.15 K

T_1 = 298.15 K

T_2 = 75°C  = 348.15 K

So,

\ln \:\left(\:\frac{13.95}{144.78}\right)\:=\:\frac{\Delta \:H_{vap}}{8.314}\:\left(\:\frac{1}{348.15}-\:\frac{1}{298.15}\:\right)

\Delta \:H_{vap}=\ln \left(\frac{13.95}{144.78}\right)\frac{8.314}{\left(\frac{1}{348.15}-\frac{1}{298.15}\right)}

\Delta \:H_{vap}=\frac{8.314}{\frac{1}{348.15}-\frac{1}{298.15}}\left(\ln \left(13.95\right)-\ln \left(144.78\right)\right)

\Delta \:H_{vap}=\left(-\frac{863000.86966\dots }{50}\right)\left(\ln \left(13.95\right)-\ln \left(144.78\right)\right)

\Delta \:H_{vap}=40383.88\ J/mol

4 0
2 years ago
Determine the specific heat (in J/g C) for a 2.508 kilogram substance which increases its temperature from 4.051 C to 42.061 C w
just olya [345]

Answer: 0.036 J/g°C

Explanation:

The quantity of heat energy (Q) required to raise the temperature of a substance depends on its Mass (M), specific heat capacity (C) and change in temperature (Φ)

Thus, Q = MCΦ

Given that,

Q = 3.42 Kilojoules

[Convert 3.42 kilojoules to joules

If 1 kilojoule = 1000 joules

3.42 kilojoules = 3.42 x 1000 = 3420J]

Mass = 2.508Kg

[Convert 2.508 kg to grams

If 1 kg = 1000 grams

2.508kg = 2.508 x 1000 = 2508g]

C = ? (let unknown value be Z)

Φ = (Final temperature - Initial temperature)

= 42.061°C - 4.051°C

= 38.01°C

Apply the formula, Q = MCΦ

3420J = 2508g x Z x 38.01°C

3420J = 95329.08g•°C x Z

Z = (3420J / 95329.08g•°C)

Z = 0.03588 J/g°C

Round the value of Z to the nearest thousandth, hence Z = 0.036 J/g°C

Thus, the specific heat of the substance is 0.036 J/g°C

7 0
2 years ago
A 60.0 mL solution of 0.112 M sulfurous acid (H2SO3) is titrated with 0.112 M NaOH. The pKa values of sulfurous acid are 1.857 (
djverab [1.8K]

Answer:

a)4.51

b) 9.96

Explanation:

Given:

NaOH = 0.112M

H2S03 = 0.112 M

V = 60 ml

H2S03 pKa1= 1.857

pKa2 = 7.172

a) to calculate pH at first equivalence point, we calculate the pH between pKa1 and pKa2 as it is in between.

Therefore, the half points will also be the middle point.

Solving, we have:

pH = (½)* pKa1 + pKa2

pH = (½) * (1.857 + 7.172)

= 4.51

Thus, pH at first equivalence point is 4.51

b) pH at second equivalence point:

We already know there is a presence of SO3-2, and it ionizes to form

SO3-2 + H2O <>HSO3- + OH-

Kb = \frac{[ HSO3-][0H-]}{SO3-2}

Kb = \frac{10^-^1^4}{10^-^7^.^1^7^2} = 1.49*10^-^7

[HSO3-] = x = [OH-]

mmol of SO3-2 = MV

= 0.112 * 60 = 6.72

We need to find the V of NaOh,

V of NaOh = (2 * mmol)/M

= (2 * 6.72)/0.122

= 120ml

For total V in equivalence point, we have:

60ml + 120ml = 180ml

[S03-2] = 6.72/120

= 0.056 M

Substituting for values gotten in the equation Kb=\frac{[HSO3-][OH-]}{[SO3-2]}

We noe have:

1.485*10^-^7=\frac{x*x}{(0.056-x)}

x = [OH-] = 9.11*10^-^5

pOH = -log(OH) = -log(9.11*10^-^5)

=4.04

pH = 14- pOH

= 14 - 4.04

= 9.96

The pH at second equivalence point is 9.96

4 0
2 years ago
How many moles of koh are contained in 750. ml of 5.00 m koh solution?
Marat540 [252]
Molarity is one of  the method of expressing concentration of solution. Mathematically it is expressed as,
 Molarity = \frac{\text{number of moles of solute}}{\text{volume of solution (l)}}

Given: Molarity of solution = 5.00 M
Volume of solution = 750 ml = 0.750 l

∴ 5 = \frac{\text{number of moles}}{.750}
∴ number of moles = 3.75

Answer: Number of moles of KOH present in solution is 3.75.
4 0
2 years ago
Other questions:
  • How many quarters fit in a 1.75 liter bottle?
    8·2 answers
  • (a) The bonding with electrostatic attraction between oppositely charged ions is called . The bonding with electron sharing betw
    5·1 answer
  • 3. What is the volume of a salt crystal measuring 2.44 x 10-2 m by 1.4 x 10-3 m by 8.4 x 10-3 m?
    5·1 answer
  • Calculate the heat of reaction, ΔH°rxn, for overall reaction for the production of methane, CH4.
    10·1 answer
  • In 200 g of a concentrated solution of 70.4 wt% nitric acid (r = 1.41 g/mL, FW(HNO3) = 63.01 g/mol), how many grams of water are
    11·1 answer
  • A scientist is wondering why a certain region in the ocean doesn't have maximum phytoplankton growth, despite having plenty of n
    12·1 answer
  • Describe how the Rube Goldberg device design that you created follows the law of conservation of energy. Be sure to include both
    15·1 answer
  • Air is a ________ mixture??​
    10·2 answers
  • How many hydrogen molecules are there in 1 ton of hydrogen?​
    11·1 answer
  • The pH of an acidic solution is 2.11. What is [H⁺]
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!