Answer:
Step-by-step explanation:
Given the equation
Sin(5x) = ½
5x = arcSin(½)
5x = 30°
Then,
The general formula for sin is
5θ = n180 + (-1)ⁿθ
Divide through by 5
θ = n•36 + (-1)ⁿ30/5
θ = 36n + (-1)ⁿ6
The range of the solution is
0<θ<2π I.e 0<θ<360
First solution
When n = 0
θ = 36n + (-1)ⁿθ
θ = 0×36 + (-1)^0×6
θ = 6°
When n = 1
θ = 36n + (-1)ⁿ6
θ = 36-6
θ = 30°
When n = 2
θ = 36n + (-1)ⁿ6
θ = 36×2 + 6
θ = 78°
When n =3
θ = 36n + (-1)ⁿ6
θ = 36×3 - 6
θ = 102°
When n=4
θ = 36n + (-1)ⁿ6
θ = 36×4 + 6
θ = 150
When n =5
θ = 36n + (-1)ⁿ6
θ = 36×5 - 6
θ = 174°
When n = 6
θ = 36n+ (-1)ⁿ6
θ = 36×6 + 6
θ = 222°
When n = 7
θ = 36n + (-1)ⁿ6
θ = 36×7 - 6
θ = 246°
When n =8
θ = 36n + (-1)ⁿ6
θ = 36×8 + 6
θ = 294°
When n =9
θ = 36n + (-1)ⁿ6
θ = 36×9 - 6
θ = 318°
When n =10
θ = 36n + (-1)ⁿ6
θ = 36×10 + 6
θ = 366°
When n = 10 is out of range of θ
Then, the solution is from n =0 to n=9
So the equation have 10 solutions in the range 0<θ<2π
the answer is
30 x 5 + 9 x 5
9514 1404 393
Answer:
∛(2500π)√37 m² ≈ 120.911 m²
Step-by-step explanation:
If the height is 3 times the diameter, it is 6 times the radius. Then the volume is ...
V = 1/3πr²h
V = 1/3πr²(6r) = 2πr³
For a volume of 100 m³, the radius is ...
100 m³ = 2πr³
r = ∛(50/π) m
The lateral area of the cone is computed from the slant height. For this cone, the slant height is found using the Pythagorean theorem:
s² = r² +(6r)² = 37r²
s = r√37
Then the lateral area is ...
LA = πrs
LA = π(∛(50/π) m)(∛(50/π) m)√37
LA = ∛(2500π)√37 m² ≈ 120.911 m²