To round a number to the nearest hundred, we count two places to the left of the decimal point, or from the last digit if the number is a whole number.
If the second digit from the last digit is upto 5, we add 1 to the preceding digit and we complete the last two numbers with zeros.
Therefore, any number from 11,950 to 12,049, will result to 12,000 when rounded to the nearest hundred.
The answers are the following:
<span><span><span>P(A)=0.75</span><span>
</span></span><span><span>P(B|A)=0.9
</span></span><span><span>P(B|<span>A′</span>)=0.8
</span></span><span><span>P(C|A∩B)=0.8
</span></span><span><span>P(C|A∩<span>B′</span>)=0.6
</span></span><span><span>P(C|<span>A′</span>∩B)=0.7
</span></span><span><span>P(C|<span>A′</span>∩<span>B′</span>)=0.3</span></span></span>
8,8,8 would be the answer
265/5 = 53/1
53 miles per hour.
*I hope this helped!
<span>The discriminant of a quadratic equation is the b^2-4ac portion that the square root is taken of. If the discriminant is negative, then the function has 2 imaginary roots, if the discriminant is equal to 0, then the function has only 1 real root, and finally, if the discriminant is greater than 0, the function has 2 real roots. So let's look at the equations and see which have a positive discriminant.
f(x) = x^2 + 6x + 8
6^2 - 4*1*8
36 - 32 = 4
Positive, so f(x) has 2 real roots.
g(x) = x^2 + 4x + 8
4^2 - 4*1*8
16 - 32 = -16
Negative, so g(x) does not have any real roots
h(x) = x^2 – 12x + 32
-12^2 - 4*1*32
144 - 128 = 16
Positive, so h(x) has 2 real roots.
k(x) = x^2 + 4x – 1
4^2 - 4*1*(-1)
16 - (-4) = 20
Positive, so k(x) has 2 real roots.
p(x) = 5x^2 + 5x + 4
5^2 - 4*5*4
25 - 80 = -55
Negative, so p(x) does not have any real roots
t(x) = x^2 – 2x – 15
-2^2 - 4*1*(-15)
4 - (-60) = 64
Positive, so t(x) has 2 real roots.</span>