Answer:
B = CHCl2 + Cl2 --> CHCl3 + Cl
Explanation:
Free radical halogenation is a chlorination reaction on Alkane hydrocarbons. This involves the splitting of molecules into radicals/ unstable molecules in the presence of sunlight/ U.V light which ensures bonding of the molecules.
Free radical chlorination is divided into 3 steps which are:
The initiation step
The propagation step
The termination step
So in reference to the question, propagation step involves two steps.
The first step is where the molecule in this case the methylene chloride(CH2Cl2) loses a hydrogen atom and then bond with a chlorine atom radical to give a nethylwnw chloride radical and HCl.
The second step involves the reaction of this methylene chloride got in the first step with chlorine molecule to form trichloride methane and a chlorine radical.
You would find in the attachment the 2 step mechanism.
Answer:
As you haven't explained what measurements you took before solving this problem, I will explain the general procedure to evaluate the efficiency of a kettle. I hope it helps you. I´ll send an attachement file with the full answer, since I couldn't write it here.
I assume that the material that is going to be heated in the kettle is water.
1- You have to boil water in it and take the time it takes to its boiling point (in seconds).
2- You have to evaluate the amount of energy the water absorbed Q with the efficiency formula which I explain in the attachement file.
3- Divide Q by the time it took to bring the water to boiling so you can have the power it consumed.
4- You divide the last value you obtained by the Kettles's power rating.
5- Multiply the last value by 100 to obtain a percentage value of efficiency.
Explanation:
Efficiency is the ration of a machine's useful work, in this case how much energy the water absorbed to get to its boiling point divided by the time it took to get to this point, and the total energy expended, in this case the kettles's power rating.
Answer:
Only 3 is correct.
Explanation:
The crystal of a metal or an ionic compound is called a cell, and there are 7 types of unit cells: cubic, tetragonal, orthorhombic, monoclinic, hexagonal, rhombohedral, and triclinic.
In a face-centered cubic cell (FCC) all angles are 90º and all lengths are equal. Each cubic cell has 8 atoms in each corner of the cube, and that atom is shared with 8 neighboring cells. So for a metal crystal, the atom is located at each of the eight lattice points, where it is shared equally between eight unit cells.
Did you intend to write [PdCl4]^-2 instead of PdCl2-4? If so, then:
<span>Cathode: [PdCl4]^-2(aq) + 2e- ======⇒ Pd(s) + 4Cl-(aq) </span>
<span>Anode: Cd(s) ==⇒ Cd+2(aq) + 2e-</span>
In NaMnO₄, Mn has the highest oxidation number.
The question is incomplete, the complete question is;
Which of the following species contains manganese with the highest oxidation number?
A) Mn
B) MnF₂
C) Mn₃(PO₄)₂
D) MnCl₄
E) NaMnO₄
In order to ascertain the specie that contains manganese with the highest oxidation number, we must calculate the oxidation number of manganese in each of the species one after the other.
1) For Mn, the oxidation number of Mn is zero because the atom is uncombined.
2) For MnF₂;
Mn has an oxidation number of +2
3) For Mn₃(PO₄)₂
Mn has an oxidation number of +2
4) For MnCl₄
Mn has an oxidation number of +4
5) For NaMnO₄
Mn has an oxidation number of +7
Hence in NaMnO₄, Mn has the highest oxidation number.
Learn more: brainly.com/question/10079361