Answer:
$393.50+/-$19.72
= ( $373.78, $413.22)
Therefore, the 95% confidence interval (a,b) = ($373.78, $413.22)
Step-by-step explanation:
Confidence interval can be defined as a range of values so defined that there is a specified probability that the value of a parameter lies within it.
The confidence interval of a statistical data can be written as.
x+/-zr/√n
Given that;
Mean x = $393.50
Standard deviation r = $50.30
Number of samples n = 25
Confidence interval = 95%
z value(at 95% confidence) = 1.96
Substituting the values we have;
$393.50+/-1.96($50.30/√25)
$393.50+/-1.96($10.06)
$393.50+/-$19.7176
$393.50+/-$19.72
= ( $373.78, $413.22)
Therefore, the 95% confidence interval (a,b) = ($373.78, $413.22)
Answer:
Adam is taking the original price minus 75% of the original price, while Rena is taking the original price times 25% which is what you would be paying. Both are correct but Renas is more efficient.
Step-by-step explanation:
Answer:
The amount of stock for which both brokers would charge the same commission is $2500.
Step-by-step explanation:
i) Let the amount of stock to be traded be worth $x
ii) therefore for both the brokers to charge the same commission we can write
1% of x = $25 
0.01
x = 25
x = 
The amount of stock for which both brokers would charge the same commission is $2500.
Answer: ∠Z ≅ ∠G and XZ ≅ FG or ∠Z ≅ ∠G and XY ≅ FE are the additional information could be used to prove that ΔXYZ ≅ ΔFEG using ASA or AAS.
Step-by-step explanation:
Given: ΔXYZ and ΔEFG such that ∠X=∠F
To prove they are congruent by using ASA or AAS conruency criteria
we need only one angle and side.
1. ∠Z ≅ ∠G(angle) and XZ ≅ FG(side)
so we can apply ASA such that ΔXYZ ≅ ΔFEG.
2. ∠Z ≅ ∠G (angle)and ∠Y ≅ ∠E (angle), we need one side which is not present here.∴we can not apply ASA such that ΔXYZ ≅ ΔFEG.
3. XZ ≅ FG (side) and ZY ≅ GE (side), we need one angle which is not present here.∴we can not apply ASA such that ΔXYZ ≅ ΔFEG.
4. XY ≅ EF(side) and ZY ≅ FG(side), not possible.
5. ∠Z ≅ ∠G(angle) and XY ≅ FE(side),so we can apply ASA such that
ΔXYZ ≅ ΔFEG.