answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
4vir4ik [10]
2 years ago
5

A solenoid with 3,000.0 turns is 70.0 cm long. If its self-inductance is 25.0 mH, what is its radius? (The value of μ0 is 4π x 1

0-7 N/A2 .) A. 0.02219 m B. 327 m C. 52 m D. 0.00199 m
Physics
1 answer:
nevsk [136]2 years ago
5 0

Answer:

A. 2.2*10^-2m

Explanation:

Using

Area = length x L/ uo xN²

So A = 0.7m * 25 x 10^-3H /( 4π x10^-7*

3000²)

A = 17.5*10^-3/ 1.13*10^-5

= 15.5*10^-2m²

Area= π r ²

15.5E-2/3.142 = r²

2.2*10^2m

Explanation:

You might be interested in
A moving sidewalk 95 m in length carries passengers at a speed of 0.53 m/s. One passenger has a normal walking speed of 1.24 m/s
Archy [21]

Answer:

a) t = 1.8 x 10² s

b) t = 54 s

c) t = 49 s

Explanation:

a) The equation for the position of an object moving in a straight line at constan speed is:

x = x0 + v * t

where

x = position at time t

x0 = initial position

v = velocity

t = time

In this case, the origin of our reference system is at the begining of the sidewalk.

a) To calculate the time the passenger travels on the sidewalk without wlaking, we can use the equation for the position, using as speed the speed of the sidewalk:

x = x0 + v * t

95 m = 0m + 0. 53 m/s * t

t = 95 m/ 0.53 m/s

t = 1.8 x 10² s

b) Now, the speed of the passenger will be her walking speed plus the speed of th sidewalk (0.53 m/s + 1.24 m/s = 1.77 m/s)

t = 95 m/ 1.77 m/s = 54 s

c) In this case, the passenger is located 95 m from the begining of the sidewalk, then, x0 = 95 m and the final position will be x = 0. She walks in an opposite direction to the movement of the sidewalk, towards the origin of the system of reference ( the begining of the sidewalk). Then, her speed will be negative ( v = 0.53 m/s - 2*(1.24 m/s) = -1.95 m/s. Then:

0 m = 95 m -1.95 m/s * t

t = -95 m / -1.95 m/s = 49 s

3 0
2 years ago
Capillary waves travel what than long waves
7nadin3 [17]
Faster than. Hope this helps!!!
6 0
2 years ago
Read 2 more answers
Determine the change in thermal energy of 100 g of copper (M = 63,5, Debye 348K) if it is cooled from
Setler [38]

Answer:

given,

mass of copper = 100 g

latent heat of liquid (He) = 2700 J/l

a) change in energy

Q = m Cp (T₂ - T₁)

Q = 0.1 × 376.812 × (300 - 4)

Q = 11153.63 J

He required

Q = m L

11153.63 = m × 2700

m = 4.13 kg

b) Q = m Cp (T₂ - T₁)

Q = 0.1 × 376.812 × (78 - 4)

Q = 2788.41 J

He required

Q = m L

2788.41 = m × 2700

m = 1.033 kg

c) Q = m Cp (T₂ - T₁)

Q = 0.1 × 376.812 × (20 - 4)

Q = 602.90 J

He required

Q = m L

602.9 = m × 2700

m =0.23 kg

8 0
2 years ago
The famous cliff divers of Acapulco leap from a perch 35 m above the ocean. How fast are they moving when they reach the surface
Rus_ich [418]

1) 26.2 m/s

The mechanical energy of the divers at any point of their vertical motion is sum of the kinetic energy and the gravitational potential energy:

E=K+U = \frac{1}{2}mv^2 + mgh

where

m is the mass of the diver

v is the speed

g = 9.8 m/s^2 is the acceleration due to gravity

h is the height above the water

When the diver is on the cliff, v = 0 (he is at rest), so K=0 and the initial mechanical energy is just potential energy:

E_i = mgh

where h=35 m is the height of the cliff.

When the diver hits the water above, h = 0, so U=0 and the final mechanical energy is just kinetic energy:

E_f = \frac{1}{2}mv^2

since the total mechanical energy is conserved, we have

E_i = E_f\\mgh = \frac{1}{2}mv^2

And solving the equation for v, we find the speed when they reach the surface of the water:

v=\sqrt{2gh}=\sqrt{2(9.8 m/s^2)(35 m)}=26.2 m/s

2) It is converted into thermal energy of the water

When the diver enters the water, he suddenly feels another force acting against the motion of the diver: the resistance of the water. The resistance of the water acts upward, slowing down the diver until he stops.

In this process, the speed of the diver (v) decreases, and therefore the kinetic energy of the diver decreases as well, until it becomes zero.

However, this does not mean that the conservation of energy has been violated. In fact, the kinetic energy of the diver has been converted into thermal energy of the molecules of water surrounding the diver.

8 0
2 years ago
An example of potential energy is a ball sitting _____ of the stairs.
expeople1 [14]

Answer:

at the top

Explanation:

Potential energy is the stored energy, mechanical energy,

or energy possessed by by virtue of the position of an object.an example of potential energy is the energy that a ball possesses by virtue of its sitting at the top of the stairs it being about to roll down the stairs.

3 0
2 years ago
Other questions:
  • A truck moving at 36 m/s passes a police car moving at 45 m/s in the opposite direction. If the frequency of the siren is 500 Hz
    12·1 answer
  • An OTR is removing electrodes from a client who has just received iontophoresis. Within several minutes of removing the electrod
    8·1 answer
  • A small rock is launched straight upward from the surface of a planet with no atmosphere. The initial speed of the rock is twice
    6·1 answer
  • A person fishing from a pier observes that 6 wave crests pass by in 8.0 s and estimates the distance between two successive cres
    7·1 answer
  • Prof. Swarzenneger picks up his 45 kg brief case on the 17th floor of his office building (85 m above the ground) and prepares t
    15·1 answer
  • Glycerin at 20 8 C fills the space between a hollow sleeve of diameter 12 cm and a fixed coaxial solid rod of diameter 11.8 cm.
    8·1 answer
  • In a laboratory experiment, a diffraction grating produces an interference pattern on a screen. If the number of slits in the gr
    11·1 answer
  • Frances drew a diagram to show electromagnetic induction.
    13·2 answers
  • A rock falls for 1.43 seconds how far did it fall? The falls's velocity is an acceleration of -9.81 m/s2
    13·1 answer
  • A satellite that orbits Earth with a speed of v0 must be in an orbit of radius 8RE to maintain a circular orbit, where RE is the
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!