answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leya [2.2K]
2 years ago
12

Narrow, bright fringes are observed on a screen behind a diffraction grating. The entire experiment is then immersed in water. D

o the fringes on the screen get closer together, get farther apart, remain the same, or disappear? Explain.
Physics
1 answer:
Aleks04 [339]2 years ago
8 0

Answer:

 n (a sin θ) =  m λ₀

n> 1, therefore the fringes move away from each other

Explanation:

The diffraction experiment the constructive interference fringes is described by

          a sin θ = m λ₀

in this equation it is assumed that the experiment emptied the air n = 1

When the same experiment is performed in water, the wavelength changes

           λₙ = λ₀ / n

execution for constructive interference

            a sin θ = m λₙ

we substitute

           a sin θ = m λ / n

           n (a sin θ) =  m λ₀

the refractive index of water is n = 1.33, so for the same wavelength the separation of the spectrum is multiplied by n> 1, therefore the fringes move away from each other

You might be interested in
Finally, you are ready to answer the main question. Cheetahs, the fastest of the great cats, can reach 50.0 miles/hourmiles/hour
slavikrds [6]

Answer:

The acceleration of the cheetahs is 10.1 m/s²

Explanation:

Hi there!

The equation of velocity of an object moving along a straight line with constant acceleration is the following:

v = v0 + a · t

Where:

v = velocity of the object at time t.

v0 = initial velocity.

a = acceleration.

t = time

We know that at t = 2.22 s, v = 50.0 mi/h. The initial velocity, v0, is zero.

Let's convert mi/h into m/s:

50.0 mi/h · (1609.3 m / 1 mi) · (1 h / 3600 s) = 22.4 m/s

Then, using the equation:

v = v0 + a · t

22.4 m/s = 0 m/s + a · 2.22 s

Solving for a:

22.4 m/s / 2.22 s = a

a = 10.1 m/s²

The acceleration of the cheetahs is 10.1 m/s²

5 0
2 years ago
A man walks 30 m to the west, then 5 to the east in 45 seconds
exis [7]
His average speed is  (35m/45s) = 7/9 meters per second.

His average velocity is  (30m W + 5m E) / (45s) = 25 m/s West .
8 0
2 years ago
What statements accurately describe sunspots? Check all that apply.
polet [3.4K]

Answer:

sunspots are storms on the Suns surface

Sunspots are marked by intense magnetic activity

Sunspots produce solar flares and hot gassy ejections.

Sunspots can affect Earth’s climate.

Explanation:

I just did this lesson

6 0
2 years ago
A ball of mass m is found to have a weight Wx on Planet X. Which of the following is a correct expression for the gravitational
Naya [18.7K]

Answer: B. The gravitational field strength of Planet X is Wx/m.

Explanation:

Weight is a force, and as we know by the second Newton's law:

F = m*a

Force equals mass times acceleration.

Then if the weight is:

Wx, and the mass is m, we have the equation:

Wx = m*a

Where in this case, a is the gravitational field strength.

Then, isolating a in that equation we get:

Wx/m = a

Then the correct option is:

B. The gravitational field strength of Planet X is Wx/m.

4 0
2 years ago
To exercise, a man attaches a 4.0 kg weight to the heel of his foot. When his leg is stretched out before him, what is the torqu
Masja [62]

Answer:

B. τ = 16 Nm

Explanation:

In order to find the torque exerted by the weight attached to the heel of man's foot, when his leg is stretched out. We use following formula:

τ = Fd

here,

τ = Torque = ?

F = Force exerted by the weight = Weight = mg

F = mg = (4 kg)(10 m/s²) = 40 N

d = distance from knee to weight = 40 cm = 0.4 m

Therefore,

τ = (40 N)(0.4 m)

<u>B. τ = 16 Nm</u>

8 0
2 years ago
Other questions:
  • Question: For an 80-N squeeze on the handle of the pliers, determine the force F applied to the round rod b... For an 80-N squee
    8·1 answer
  • Raphael refers to a wave by noting its wavelength. lucinda refers to a wave by noting its frequency. which student is correct an
    15·1 answer
  • A sinusoidal electromagnetic wave of frequency 6.10×1014hz travels in vacuum in the +x direction. the magnetic field is parallel
    7·1 answer
  • A ball took 0.45s to hit the ground 0.72m from the table. What was the horizontal velocity of the ball as it rolled off the tabl
    8·1 answer
  • A proton travels at right angles through a magnetic field of 0.025 teslas. If the magnitude of the magnetic force on the proton
    12·1 answer
  • The Lamborghini Huracan has an initial acceleration of 0.75g. Its mass, with a driver, is 1510 kg.
    13·1 answer
  • An electron beam enters a crossed-field velocity selector with magnetic and electric fields of 2.0 mT and 6.0×10^3 N/C, respecti
    11·1 answer
  • You are in a rocket moving away from Earth at one-third the speed of light relative to Earth. A friend is on Earth, and an astro
    5·1 answer
  • A young child hold a string attached to a balloon. What is the reaction force to the balloon pulling up on the earth?
    12·1 answer
  • A dog is 60m away while moving at constant velocity of 10m/s towards you. Where is the dog after 4 seconds?
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!