answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
snow_tiger [21]
2 years ago
12

If you wish to detect details of the size of atoms (about 1 ✕ 10−10 m) with electromagnetic radiation, it must have a wavelength

of about this size.
(a) What is its frequency?
(b) What type of electromagnetic radiation might this be?
Physics
1 answer:
Thepotemich [5.8K]2 years ago
7 0

Answer:

a) 3×10^18 Hz

b) The electromagnetic wave is an x-ray

Explanation:

We know that the speed of an electromagnetic wave is given by;

c= λf

Where;

c= speed of electromagnetic waves = 3×10^8 ms-1

f= frequency of electromagnetic waves= the unknown

λ = wavelength of the electromagnetic wave= 1 ×10^-10 m

Hence;

f = c/λ= 3×10^8/ 1×10^-10

f= 3×10^18 Hz

b) The electromagnetic wave is an x-ray.

You might be interested in
A baseball thrown at an angle of 60.0° above the horizontal strikes a building 16.0 m away at a point 8.00 m above the point fro
yanalaym [24]

Answer:

a) v_{o} =16m/s

b) v=9.8m/s

c) \beta =-35.46º

Explanation:

From the exercise we know that the ball strikes the building 16m away and its final height is 8m more than the initial

Being said that, we can calculate the initial velocity of the ball

a) First we analyze its horizontal motion

x=v_{ox}t

x=v_{o}cos(60)t

v_{o}=\frac{x}{tcos(60)}=\frac{16m}{tcos(60)} (1)

That would be our first equation

Now, we need to analyze its vertical motion

y=y_{o}+v_{oy}t+\frac{1}{2}gt^2

y_{o}+8=y_{o}+v_{o}sin(60)t-\frac{1}{2}(9.8)t^2

Knowing v_{o} in our first equation (1)

8=\frac{16}{tcos(60)}sin(60)t-\frac{1}{2}(9.8)t^2

\frac{1}{2}(9.8)t^2=16tan(60)-8

Solving for t

t=\sqrt{\frac{2(16tan(60)-8)}{9.8} } =2s

So, the ball takes to seconds to get to the other building. Now we can calculate its <u>initial velocity</u>

v_{o}=\frac{16m}{(2s)cos(60)}=16m/s

b) To find the <u>magnitude of the ball just before it strikes the building</u> we need to calculate its x and y components

v_{x}=v_{ox}+at=16cos(60)=8m/s

v_{y}=v_{oy}+gt=16sin(60)-(9.8)(2)=-5.7m/s

So, the magnitude of the velocity is:

v=\sqrt{v_{x}^{2}+v_{y}^{2}}=\sqrt{(8m/s)^2+(-5.7m/s)^2}=9.8m/s

c) The <u><em>direction of the ball</em></u> is:

\beta=tan^{-1}(\frac{v_{y} }{v_{x}})=tan^{-1}(\frac{-5.7}{8})=-35.46º

4 0
2 years ago
Which of the following describes the time over which a periodic wave repeats?
sineoko [7]

Answer:

b

Explanation:

4 0
2 years ago
The perihelion of the comet TOTAS is 1.69 AU and the aphelion is 4.40 AU. Given that its speed at perihelion is 28 km/s, what is
dybincka [34]

Answer:

The speed at the aphelion is 10.75 km/s.

Explanation:

The angular momentum is defined as:

L = mrv (1)

Since there is no torque acting on the system, it can be expressed in the following way:

t = \frac{\Delta L}{\Delta t}

t \Delta t = \Delta L

\Delta L = 0

L_{a} - L_{p} = 0

L_{a} = L_{p}   (2)

Replacing equation 1 in equation 2 it is gotten:

mr_{a}v_{a} =mr_{p}v_{p} (3)

Where m is the mass of the comet, r_{a} is the orbital radius at the aphelion, v_{a} is the speed at the aphelion, r_{p} is the orbital radius at the perihelion and v_{p} is the speed at the perihelion.          

From equation 3 v_{a} will be isolated:    

v_{a} = \frac{mr_{p}v_{p}}{mr_{a}}

v_{a} = \frac{r_{p}v_{p}}{r_{a}}   (4)    

Before replacing all the values in equation 4 it is necessary to express the orbital radius for the perihelion and the aphelion from AU (astronomical units) to meters, and then from meters to kilometers:

r_{p} = 1.69 AU x \frac{1.496x10^{11} m}{1 AU} ⇒ 2.528x10^{11} m

r_{p} = 2.528x10^{11} m x \frac{1km}{1000m} ⇒ 252800000 km

r_{a} = 4.40 AU x \frac{1.496x10^{11} m}{1 AU} ⇒ 6.582x10^{11} m

r_{p} = 6.582x10^{11} m x \frac{1km}{1000m} ⇒ 658200000 km  

     

Then, finally equation 4 can be used:

v_{a} = \frac{(252800000 km)(28 km/s)}{(658200000 km)}

v_{a} = 10.75 km/s

Hence, the speed at the aphelion is 10.75 km/s.

       

8 0
2 years ago
When an element tends to lose its valence electrons in chemical reactions, it behaves more like a _______ . When an element tend
vampirchik [111]

the answers are

metal

nonmetal

lower

higher

in the middle

7 0
2 years ago
Read 2 more answers
A thermal insulator separates a warm liquid from a cold liquid. Neglecting the effects of the environment, how will the warm liq
Sindrei [870]
If it;s a good insulator, there'll be no heat transfer warm to cold. So, over time, given the insulation ... nothing should happen ...
5 0
2 years ago
Other questions:
  • a steel block has a mass of 40g.it is in the form of a cube. each edge is 1.74cm long. calculate the density
    13·1 answer
  • Through how many volts of potential difference must an electron, initially at rest, be accelerated to achieve a wave length of 0
    13·1 answer
  • A material that has a fracture toughness of 33 MPa.m0.5 is to be made into a large panel that is 2000 mm long by 250 mm wide and
    11·1 answer
  • Determine the torque applied to the shaft of a car that transmits 225 hp
    12·1 answer
  • At t = 0 a grinding wheel has an angular velocity of 24.0 rad/s. It has a constant angular acceleration of 30.0rad/s2 until a ci
    13·1 answer
  • Monochromatic light is incident on a grating that is 75 mm wide and ruled with 50,000 lines. the second-order maximum is seen at
    9·1 answer
  • Which of the following planets helped astronomers locate another planet?
    8·1 answer
  • Find the average power Pavg created by the force F in terms of the average speed vavg of the sled.
    10·1 answer
  • 2.27 A gas is compressed from V1= 0.3 m3, p1=1 bar to V2= 0.1 m3, p2 =3 bar. The pressure and
    15·1 answer
  • If a force of 26 N is exerted on two balls, one with a mass of 0.52 kg and the other with a mass of 0.78 kg, the ball with the m
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!