I could be wrong, but I'm pretty sure it's 144kg.
Answer: SG = 2.67
Specific gravity of the sand is 2.67
Explanation:
Specific gravity = density of material/density of water
Given;
Mass of sand m = 100g
Volume of sand = volume of water displaced
Vs = 537.5cm^3 - 500 cm^3
Vs = 37.5cm^3
Density of sand = m/Vs = 100g/37.5 cm^3
Ds = 2.67g/cm^3
Density of water Dw = 1.00 g/cm^3
Therefore, the specific gravity of sand is
SG = Ds/Dw
SG = (2.67g/cm^3)/(1.00g/cm^3)
SG = 2.67
Specific gravity of the sand is 2.67
Answer:
f3 = 102 Hz
Explanation:
To find the frequency of the sound produced by the pipe you use the following formula:

n: number of the harmonic = 3
vs: speed of sound = 340 m/s
L: length of the pipe = 2.5 m
You replace the values of n, L and vs in order to calculate the frequency:

hence, the frequency of the third overtone is 102 Hz
Answer:

Explanation:
You can consider that the force that acts over the proton is the same to the force over the electron. This is because the electric force is given by:


where E is the constant electric field between the parallel plates, and is the same for both electron and proton. Also, the charge is the same.
by using the Newton second law for the proton, and by using kinematic equation for the calculation of the acceleration you can obtain:

(it has been used that vp^2 = v_o^2+2ad) where d is the separation of the plates, ap the acceleration of the proton, vp its velocity and mp its mass.
By doing the same for the electron you obtain:

we can equals these expressions for both proton and electron, because the forces qE are the same:

Through the work of Max Planck<span>, Einstein, </span>Louis de Broglie<span>, </span>Arthur Compton<span>, </span>Niels Bohr<span>, current scientific theory holds that all particles also have a wave nature (and vice versa).</span>