answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mnenie [13.5K]
2 years ago
6

A baseball thrown at an angle of 60.0° above the horizontal strikes a building 16.0 m away at a point 8.00 m above the point fro

m which it is thrown. Ignore air resistance. Part A
Find the magnitude of the initial velocity of the baseball (the velocity with which the baseball is thrown).
Express your answer in meters per second.
Part B
Find the magnitude of the velocity of the baseball just before it strikes the building.
Express your answer in meters per second.
Part C
Find the direction of the velocity of the baseball just before it strikes the building.
Express your answer in degrees.
Physics
1 answer:
yanalaym [24]2 years ago
4 0

Answer:

a) v_{o} =16m/s

b) v=9.8m/s

c) \beta =-35.46º

Explanation:

From the exercise we know that the ball strikes the building 16m away and its final height is 8m more than the initial

Being said that, we can calculate the initial velocity of the ball

a) First we analyze its horizontal motion

x=v_{ox}t

x=v_{o}cos(60)t

v_{o}=\frac{x}{tcos(60)}=\frac{16m}{tcos(60)} (1)

That would be our first equation

Now, we need to analyze its vertical motion

y=y_{o}+v_{oy}t+\frac{1}{2}gt^2

y_{o}+8=y_{o}+v_{o}sin(60)t-\frac{1}{2}(9.8)t^2

Knowing v_{o} in our first equation (1)

8=\frac{16}{tcos(60)}sin(60)t-\frac{1}{2}(9.8)t^2

\frac{1}{2}(9.8)t^2=16tan(60)-8

Solving for t

t=\sqrt{\frac{2(16tan(60)-8)}{9.8} } =2s

So, the ball takes to seconds to get to the other building. Now we can calculate its <u>initial velocity</u>

v_{o}=\frac{16m}{(2s)cos(60)}=16m/s

b) To find the <u>magnitude of the ball just before it strikes the building</u> we need to calculate its x and y components

v_{x}=v_{ox}+at=16cos(60)=8m/s

v_{y}=v_{oy}+gt=16sin(60)-(9.8)(2)=-5.7m/s

So, the magnitude of the velocity is:

v=\sqrt{v_{x}^{2}+v_{y}^{2}}=\sqrt{(8m/s)^2+(-5.7m/s)^2}=9.8m/s

c) The <u><em>direction of the ball</em></u> is:

\beta=tan^{-1}(\frac{v_{y} }{v_{x}})=tan^{-1}(\frac{-5.7}{8})=-35.46º

You might be interested in
Recall that in the equilibrium position, the upward force of the spring balances the force of gravity on the weight. Use this co
natima [27]

Recall that in the equilibrium position, the upward force of the spring balances the force of gravity on the weight is given below.

Explanation:

Measure unstretched length of spring, L.  E.g. L = 0.60m.

Set mass to a convenient value (e.g. m = 0.5kg).

Hang mass.

Measure new spring length, L'. E.g. L' = 0.70m.

Calculate extension: e = L' - L = 0.70 – 0.60 = 0.10m

Use mg = ke (in equilibrium weight = tension)

k = mg/e

Don't know what value you are using for example.  Suppose it is 10N/kg (same thing as 10m/s²).

k = 0.5*10/0.10 = 50 N/m

Repeat for a few different masses.  (L always stays the same.)

Take the average of your k values.

5 0
1 year ago
Read 2 more answers
A uniform piece of wire, 20 cm long, is bent in a right angle in the center to give it an L-shape. How far from the bend is the
zlopas [31]

Answer:

the center of mass is 7.07 cm apart from the bend

Explanation:

the centre of mass of a wire of length L is L/2 ( assuming uniform density). Then initially the x coordinate of the centre of mass is

x₁ = L/2 = 20 cm /2 = 10 cm

when the wire is bent in a right angle the coordinates of the new centre of mass will be

x₂ = L₂/2

y₂=  L₂/2

where L₂ is the length of the horizontal piece and vertical piece . Then L₂=L/2

x₂ = L₂/2 = L/4 = 20 cm/4 = 5 cm

y₂= L₂/2 = L/4 = 20 cm/4 = 5 cm

x₂=y₂=X

locating the bend in the origin (0,0) the distance to the centre of mass is

d = √(x₂²+y₂²) = √(2X²) = √2*X=√2*5cm = 7.07 cm

d = 7.07 cm

5 0
2 years ago
Read 2 more answers
Astronomers have discovered a new planet called "Xandar" beyond the orbit of Pluto (No, not really but I need a fake planet for
Burka [1]

Answer:

m = 1.82E+23 kg

Explanation:

G = universal gravitational constant = 6.67E-11 N·m²/kg²

r = radius of orbit = 72,600 km = 7.26E+07 m

C = circumference of orbit = 2πr = 4.56E+08 m

P = period of orbit = 12.9 d = 1,114,560 s

v = orbital velocity of satellite Jim = C/P = 409 m/s

m = mass of Xandar = to be determined

v = √(Gm/r)

v² = [√(Gm/r)]²

v² = Gm/r

rv² = Gm

rv²/G = m

m = rv²/G

mG = universal gravitational constant = 6.67E-11 N·m²/kg²

r = radius of orbit = 72,600 km = 7.26E+07 m

C = circumference of orbit = 2πr = 4.56E+08 m

P = period of orbit = 12.9 d = 1,114,560 s

v = orbital velocity of satellite Jim = C/P = 409 m/s

m = mass of Xandar = to be determined

v = √(Gm/r)

v² = [√(Gm/r)]²

v² = Gm/r

rv² = Gm

rv²/G = m

m = rv²/G

m = 1.82E+23 kg

3 0
2 years ago
The mass per unit length of a 14-gauge copper wire is 18.5 g/m. If the wire is placed running along the horizontal x-axis (east-
zmey [24]

Answer:

0.6295 A

Explanation:

I=mg/BL put values in this formula.  

7 0
1 year ago
Koala bears can eat only certain kind of Australian eucalyptus leaves.koalas are considered
DaniilM [7]
<em>Hello there, and thank you for asking your question here on brainly.

<u>Answer: Koala bears are considered herbivores, or as in the scientific name, arboreal herbivorous marsupial, marsupial because it also carries it's babies around in a pouch. Koala bears are also native to Australia, which eucalyptus leaves are also native to.
</u>
Hope this helped you! ♥</em>
3 0
2 years ago
Other questions:
  • A ship maneuvers to within 2500 m of an island's 1800 m high mountain peak and fires a projectile at an enemy ship 610 m on the
    5·2 answers
  • Find the centripetal force needed by a 1275 kg car to make a turn of radius 40.0 m at a speed of 25.0 km/h
    12·2 answers
  • Which planet is approximately 20 times farther from the sun than earth is answer\?
    7·1 answer
  • A person weighing 0.70 kn rides in an elevator that has an upward acceleration of 1.5 m/s2. what is the magnitude of the normal
    11·1 answer
  • Juan is standing on the street. An ambulance moves toward him and then passes by. What best describes the pitch that Juan hears?
    13·2 answers
  • A densly wound cylindrical coil has 210 turns per meter, a 5 cm radius, and carries 38 mA. What is the magnitude of the uniform
    11·1 answer
  • You are seated in a bus and notice that a hand strap that is hanging from the ceiling hangs away from the vertical in the backwa
    12·1 answer
  • A beam of electrons is accelerated from rest through a potential difference of 0.200 kV and then passes through a thin slit. Whe
    13·1 answer
  • A 12.0 kg mass, fastened to the end of an aluminum wire with an unstretched length of 0.50 m, is whirled in a vertical circle wi
    7·2 answers
  • Suppose that we use a heater to boil liquid nitrogen (N2 molecules). 4480 J of heat turns 20 g of liquid nitrogen into gas. Note
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!