Answer:
- 5.8206 cm
- 10.528 cm
- 23.056 cm^2
Step-by-step explanation:
(a) The Law of Sines can be used to find BD.
BD/sin(48°) = BD/sin(50°)
BD = (6 cm)(sin(48°)/sin(60°)) ≈ 5.82064 cm
__
(b) We can use the Law of Cosines to find AD.
AD^2 = AB^2 +BD^2 -2·AB·BD·cos(98°) . . . . . angle ABD = 48°+50°
AD^2 ≈ 110.841
AD ≈ √110.841 ≈ 10.5281 . . . cm
__
(c) The area of ∆ABD can be found using the formula ...
A = ab·sin(θ)/2 . . . . . where a=AB, b=BD, θ = 98°
A = (8 cm)(5.82064 cm)sin(98°)/2 ≈ 23.0560 cm^2
_____
Angle ABD is the external angle of ∆BCD that is the sum of the remote interior angles BCD and BDC. Hence ∠ABD = 48° +50° = 98°.
I = prt
p = 7430
r = 5%....turn to decimal = 0.05
t = 3
I = (7430)(0.05)(3)
I = 1114.50 <===
Answer:
-5
Step-by-step explanation:
-4x +10 =5(x +11)
-4x +10 =5x +55
-4x - 5x =55 - 10
-9x =45
x=-45 :9
x=-5
W^2=80
W SQRT80
W=8.94 ANS.FOR THE WIDTH
L=3*8.94=26.83 ANS.FOR THE LENGTH
PROOF:
240=8.94*26.83
240=240