Answer:
The wavelength of the incident light is
400 nm
Explanation:
Given data
Distance between the sits

d = 1.5 ×
m
°
m = 2
We know that the wavelength of the incident light is given by

Put all the value in above formula we get
×
4 ×
m
400 nm
Therefore the wavelength of the incident light is
400 nm
Answer:
Explanation:
Mutual inductance is equal to magnetic flux induced in the secondary coli due to unit current in the primary coil .
magnetic field in a torroid B = μ₀ n I , n is number of turns per unit length and I is current .
B = 4π x 10⁻⁷ x (1000 / 2π x .16 )x 1 ( current = 1 A)
flux in the secondary coil
= B x area of face of coil x no of turns of secondary
= 4π x 10⁻⁷ x (1000 /2π x .16 ) .25 x 10⁻⁴ x 750
= 2 x 1000 x .25 x( 750 /.16) x 10⁻¹¹
2343.75 x 10⁻⁸
= 23.43 x 0⁻⁶ H.
.
Answer:
Explanation:
area of square loop A = side²
= 8.4² x 10⁻⁴
A = 70.56 x 10⁻⁴ m²
when it is converted into rectangle , length = 14.7 , width = 2.1
area = length x width
= 14.7 x 2.1 x 10⁻⁴
= 30.87 x 10⁻⁴ m²
Let magnetic field be B
Change in flux = magnetic field x change in area
= B x ( 70.56 x 10⁻⁴ - 30.87 x 10⁻⁴ )
= 39.69 x 10⁻⁴ B
rate of change of flux = change in flux / time taken
= 39.69 x 10⁻⁴ B / 6.5 x 10⁻³
= 6.1 x 10⁻¹ B
emf induced = 6.1 x 10⁻¹ B
6.1 x 10⁻¹ B = 14.7 ( given )
B = 2.41 x 10
= 24.1 T
B ) magnetic flux is decreasing , so it needs to be increased as per Lenz's law . Hence current induced will be anticlockwise so that additional magnetic flux is induced out of the page.
If speed = distance/time , then time = speed/distance.
So...
Speed of light = 3*10^8(m/s)
Average distance from Earth to Sun = 149.6*10^9(m)
Therefore, t=(3*10^8(m/s))/(149.6*10^9(m))
I hope this was a helpful explanation, please reply if you have further questions about the problem.
Good luck!