The energy is transformed into kinetic energy which makes the substance to move. The law of conservation of energy which is the first law of thermodynamics states that in a closed system energy can neither be created nor destroyed but can change from one form to another
Answer:
A. Yes, there is more than enough sodium carbonate.
Explanation:
Hello,
In this case, based on the given reaction which is:

By stoichiometry, one computes the grams of sodium carbonate that will neutralize 1,665 g of sulfuric acid as shown below:

Thus, the available mass is 2.0 kg so 0.2 kg are in excess, therefore: A. Yes, there is more than enough sodium carbonate.
Best regards.
Answer:
no he just repeated the steps and made more of the same cleaner my guy
Explanation:
22.0 is the same as saying that in 100 grams of a chocolate bar, there are 22.0 grams of pecans. or to make it easier because of this problem- 100 Kilograms of a chocolate bar, there is 22.0 Kg of pecans. we can use this as a conversion factor (what is used to convert a value to another value.
conversion factor---> 22.0 kg of pecan= 100 kg of chocolate bar
Note: remember this, what you are converting from goes in the denominator, what you converting to goes in the numerator.
5.0 Kg of pecan (100 Kg of chocolate bar/ 22.0 Kg of pecan)= 23 Kg of chocolate bar
Answer:
See the explanation
Explanation:
1) The Lewis structure for
has a central Carbon<em> </em>atom attached to Oxygen atoms.
In the
we will have a structure: O=C=O the <u>central atom</u> "carbon" we will have <u>2 sigma bonds and 2 pi bonds</u>, therefore, we have an <u>Sp hybridization</u>. For O we have <u>1 pi and 1 sigma bond</u>, therefore, we have an <u>Sp2 hybridization</u>.
2) These atoms are held together by <u>double bonds.</u>
<u></u>
Again in the structure of
: O=C=O we only have double bonds.
3. Carbon dioxide has a Carbon dioxide has a <u>Linear</u> electron geometry.
Due to the double bonds we have to have a linear structure because in this geometry the atoms will be further apart from each other.
4. The carbon atom is <u>Sp</u> hybridized.
We will have for carbon 2 pi bonds, so we will have an <u>Sp</u> hybridization.
5. Carbon dioxide has two Carbon dioxide has two C(p) - O(p) π bonds and two C(sp) - O(Sp2) σ bonds.
(See figures)
Figure 1: Carbon hybridization
Figure 2: Oxygen hybridization