Sin(19)
Use your calculator.
sin(19) = 0.3255681545
Answer:
B) A one-sample t-test for population mean would be used.
Step-by-step explanation:
The complete question is shown in the image below.
The marketing executive is interested in comparing the mean number of sales of this year to that of previous year.
The marketing executive already has the value of mean from previous year and uses a sample to calculate the mean and standard deviation of sales for the current year.
Since, data is being collected for one sample only this limits us to chose between one sample test for mean. So now the possible options are one sample t-test for population mean and one sample t-test for population mean.
If we read the statement we can see that we have the value of sample mean and sample standard deviation. Value of population standard deviation is unknown. In cases where value of population standard deviation is not known and sample standard deviation is given, t-test is used.
Therefore, we can conclude that A one-sample t-test for population mean would be used.
Answer:
A. Initially, there were 12 deer.
B. <em>N(10)</em> corresponds to the amount of deer after 10 years since the herd was introducted on the reserve.
C. After 15 years, there will be 410 deer.
D. The deer population incresed by 30 specimens.
Step-by-step explanation:

The amount of deer that were initally in the reserve corresponds to the value of N when t=0


A. Initially, there were 12 deer.
B. 
B. <em>N(10)</em> corresponds to the amount of deer after 10 years since the herd was introducted on the reserve.
C. 
C. After 15 years, there will be 410 deer.
D. The variation on the amount of deer from the 10th year to the 15th year is given by the next expression:
ΔN=N(15)-N(10)
ΔN=410 deer - 380 deer
ΔN= 30 deer.
D. The deer population incresed by 30 specimens.