Answer:
- 7.48
Explanation:
Given:
Concentration of the sugar solution, C = 0.3 M
Temperature, T = 27° C = 273 + 27 = 300 K
Now,
The solute potential is given as:
solute potential = - iCRT
where,
i is the number of particles the particular molecule will make in water
i = 1 for sugar
R is the universal gas constant = 0.0831 liter bar/mole-K
on substituting the respective values, we get
solute potential = - 1 × 0.3 × 0.0831 × 300
or
The solute potential = - 7.479 ≈ - 7.48
Answer:
328.1 K.
Explanation:
- To calculate the no. of moles of a gas, we can use the general law of ideal gas: <em>PV = nRT</em>.
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in.
- If n is constant, and have two different values of (P, V and T):
<em>P₁V₁T₂ = P₂V₂T₁</em>
<em></em>
P₁ = 1.0 atm (standard P), V₁ = 72.1 L, T₁ = 25°C + 273 = 298 K (standard T).
P₂ = 93.6 kPa = 0.924 atm, V₂ = 85.9 L, T₂ = ??? K.
<em>T₂ = P₂V₂T₁/P₁V₁ = </em>(0.924 atm)(85.9 L)(298 K)/(1.0 atm)(72.1 L) <em>= 328.1 K.</em>
<em></em>
Answer:
650 grams
Explanation:
Given that acetylene gas reacts with oxygen to produce caobon dioxide, water and heat and the unbalnced equation is

Gram-formula mass of
g/mol
So, mass of 1 mole of acelylene is 26 grams
Therefore, mass of 25 moles of acelylene=25x26=650 grams
Hence, the mass of 25 moles of acelylene is 650 grams
Answer:
See explanation
Explanation:
The number of electrons in each principal energy shell increases as the number of shells increases because more electronic orbitals become available to accommodate the electrons.
For instance, the n= 2 level only accommodates eight electrons in the s and p orbitals whereas the n=3 level accommodates 18 electrons in s, p and d orbitals respectively.
Each principal level accommodates 2n^2 electrons where n= the principal energy shell.
Answer:
The maximum mass of water produced is 
Explanation:
From the question we are told that
The mass of sucrose is 
The chemical formula for sucrose is 
The chemical equation for the dissociation of sucrose is

The number of moles of sucrose can be evaluated as

Where Z is the molar mass of sucrose which has a constant value of

So


From the chemical equation one mole of sucrose produces 11 moles of water so 0.585 moles of sucrose will produce x moles of water
Therefore


Now the mass of water produced is mathematically represented as

Where
is the molar mass of water with a constant values of 
So

