Answer:
D. 15g
Explanation:
The law of conservation of mass states that, in a chemical reaction, mass can neither be created nor destroyed. This means that the amount of matter in the elements of the reactants must be equal to the amount in the resulting products.
In this question, 25 grams of a reactant AB, was broken down in a reaction to produce 10 grams of products A and X grams of product B. According to the law of conservation of mass, the mass of the reactant must be equal to the total mass of the products. This means that 25 grams must also be the total mass of both products in this reaction. Hence, if product A is 10 grams, product B will be 25 grams - 10 grams = 15 grams.
Therefore, product B must be 15 grams in order to form a total of 25 grams when added to the mass of product A. This will equate the mass of the reactant AB and fulfill the law of conservation of mass.
Answer:
are present in solution.
Explanation:
Molarity of the solution = 0.210 M
Volume of the solution = 65.5 ml = 0.0655 L
Moles of aluminum iodide= n


n = 0.013755 moles of aluminum iodide
1 mole of aluminum iodide contains 3 moles of iodide ions:
Then 0.013755 moles of aluminum iodide will contain:
of iodide ions
Number of iodide ions in 0.041265 moles:

are present in solution.
Answer:
T½ = 16hours
Explanation:
Final mass (N) = 10g
Initial mass (No) = 20g
Time (t) = 16hours
T½ = ?
T½ = In2 / λ
But λ = ?
In(N/No) = -λt
In(10/20) = -(λ * 16)
In(0.5) = -16λ
-0.693 = -16λ
λ = 0.693 / 16
λ = 0.0433
Note : λ is known as the disintegration constant
T½ = In2 / λ
T½ = 0.693 / 0.0433
T½ = 16hours
The half-life of the sample is 16hours
Answer:
Here's what I get
Explanation:
(g) Titration curves
I can't draw two curves on the same graph, but I can draw two separate curves for you.
The graph in part (d) had an equivalence point at 20 mL.
In the second titration, the NaOH was twice as concentrated, so the volume to equivalence point would be half as much — 10 mL.
The two titration curves are below.
(h) Evidence of reaction
HCl and NaOH are both colourless.
They don't evolve a gas or form a precipitate when they react.
The student probably noticed that the Erlenmeyer flask warmed up — a sign of a chemical change.
Solution:
After the reaction of mixture is worked-up Washing three times the organic with sodium carbonate helps to decrease the solubility of the organic layer into the aqueous layer. This allows the organic layer to be separated more easily.
And then the reaction washed by saturated NACL we have The bulk of the water can often be removed by shaking or "washing" the organic layer with saturated aqueous sodium chloride (otherwise known as brine). The salt water works to pull the water from the organic layer to the water layer.