The formula for calculating the total interior angle in a
regular polygon is given as:
total interior angle = (n -2) 180
where n is the number of sides and since there are sides:
total interior angle = 360°
To get this angle, we know that it is the summation of all
angles:
360° = angle A + angle C + angle B + angle D ---> 1
Looking closely, we can see that segments BC and AD are
parallel which means that:
angle A + angle C = angle B + angle D ---> 2
Substituting equation 2 to 1:
360 = 2 (angle A + angle C)
angle A + angle C = 180
(x + 16) + (6x – 4) = 180
Answer:
B
Recall that

There are three cases to consider:
(1) When

, we have

and

, so

(2) When

and

, we get

and

, so

(3) When

, we have

and

, so

So
Answer: SSS
<u>Step-by-step explanation:</u>
<u>W</u>A = <u>N</u>O
<u>A</u>S = <u>O</u>T
<u>S</u>W = <u>T</u>N
△WAS ≅ △NOT by SSS Congruency Theorem
Answer:
Step-by-step explanation:
Given the equation
Sin(5x) = ½
5x = arcSin(½)
5x = 30°
Then,
The general formula for sin is
5θ = n180 + (-1)ⁿθ
Divide through by 5
θ = n•36 + (-1)ⁿ30/5
θ = 36n + (-1)ⁿ6
The range of the solution is
0<θ<2π I.e 0<θ<360
First solution
When n = 0
θ = 36n + (-1)ⁿθ
θ = 0×36 + (-1)^0×6
θ = 6°
When n = 1
θ = 36n + (-1)ⁿ6
θ = 36-6
θ = 30°
When n = 2
θ = 36n + (-1)ⁿ6
θ = 36×2 + 6
θ = 78°
When n =3
θ = 36n + (-1)ⁿ6
θ = 36×3 - 6
θ = 102°
When n=4
θ = 36n + (-1)ⁿ6
θ = 36×4 + 6
θ = 150
When n =5
θ = 36n + (-1)ⁿ6
θ = 36×5 - 6
θ = 174°
When n = 6
θ = 36n+ (-1)ⁿ6
θ = 36×6 + 6
θ = 222°
When n = 7
θ = 36n + (-1)ⁿ6
θ = 36×7 - 6
θ = 246°
When n =8
θ = 36n + (-1)ⁿ6
θ = 36×8 + 6
θ = 294°
When n =9
θ = 36n + (-1)ⁿ6
θ = 36×9 - 6
θ = 318°
When n =10
θ = 36n + (-1)ⁿ6
θ = 36×10 + 6
θ = 366°
When n = 10 is out of range of θ
Then, the solution is from n =0 to n=9
So the equation have 10 solutions in the range 0<θ<2π