Answer:
Frequency will be equal to 5.20 kHz
So option (c) will be correct answer
Explanation:
We have given value of capacitance 
Potential difference across capacitor V = 12 volt
Current through capacitor 
Capacitive reactance will be equal to 
Capacitive reactance is equal to 




f = 5.20 kHz
So frequency will be equal to 5.20 kHz
So option (c) will be correct answer
You will have to use this formula:

Final Velocity (V) = 4m/s
Initial Velocity (Vo) = 8m/s
Acceleration (a) = ? m/s^2
Time (t) = 2 secs
Then:
-> 4 = 8 + a x 2
-> 4 - 8 = 2a
-> -4 = 2a
-> a = -4/2
-> a = -2 m/s^2
Ps: It's value is negative because the she was in retrograde motion.
Answer: Her acceleration is -2 m/s^2.
Answer:
Mass of Little Sister = 44.17 kg
Explanation:
From Newton's second law of motion, the magnitude of force applied on the sled is given by the following formula:
F = ma
where,
F = Force Applied = 120 N
a = Acceleration = 2.3 m/s²
m = Mass of Sled + Mass of Little Sister = 8 kg + Mass of Little Sister
Therefore,
120 N = (2.3 m/s²)(8 kg + Mass of Little Sister)
(120 N)/(2.3 m/s²) = 8 kg + Mass of Little Sister
Mass of Little Sister = 52.17 kg - 8 kg
<u>Mass of Little Sister = 44.17 kg</u>
Answer: a) 95.07m b) 81.88 m
Explanation:
a)
For finding the distance when vehicle is going downhill we have the formula as:
Stop sight distance= Velocity*Reaction time + Velocity² / 2*g*(f constant- Grade value)
Now by AASHTO, we have for v= 45 mph= 72.4 kph, f= 0.31
Reaction time= 0.28
So putting values we get
Stop sight distance= 0.28*72.4 *1 + 
Stop sight distance= 95.07 m
b)
For finding the distance when vehicle is going uphill we have the formula as:
Stop sight distance= Velocity*Reaction time + Velocity² / 2*g*(f constant- Grade value)
Now by AASHTO, we have for v= 45 mph= 72.4 kph, f= 0.31
Reaction time= 0.28
So putting values we get
Stop sight distance= 0.28*72.4 *1 + 
Stop sight distance= 81.88 m