Given:
a square with an area of a² is enlarged to a square with an area of 25a².
The side length of the smaller square was changed when The side length was multiplied by 5.
Area = (1a)² = a²
Area = 1a * 5 = 5a ⇒ (5a)² = 25a²
No, this rel. is not proportional because of the addition involved ("plus 1 lb for each guest").
A proportional rel. features mult. only.
Answer:
Yes, A KLP can be reflected across the line containing KP and then translated so that Pis mapped to M.
Step-by-step explanation:
The figure shows two congruent by HA theorem (they have congruent hypotenuses and a pair of congruent angles adjacent to the hypotenuses) triangles KLP and QNM.
A rigid transformation is a transformation which preserves lengths. Reflection, rotation and translation are rigit transformations.
If you reflect triangle KLP across the leg KP and translate it up so that point P coincides with point M , then the image of triangle KLP after these transformations will be triangle QNM.
Answer:
a). x = 11
b). m∠DMC = 39°
c). m∠MAD = 66°
d). m∠ADM = 36°
e). m∠ADC = 18°
Step-by-step explanation:
a). In the figure attached,
m∠AMC = 3x + 6
and m∠DMC = 6x - 49
Since "in-center" of a triangle is a points where the bisectors of internal angles meet.
Therefore, MC is the angle bisector of angle AMD.
and m∠AMC ≅ m∠DMC
3x + 6 = 8x - 49
8x - 3x = 49 + 6
5x = 55
x = 11
b). m∠DMC = 8x - 49
= (8 × 11) - 49
= 88 - 49
= 39°
c). m∠MAD = 2(m∠DAC)
= 2(30)°
= 60°
d). Since, m∠AMD + m∠ADM + m∠MAD = 180°
2(39)° + m∠ADM + 66° = 180°
78° + m∠ADM + 66° = 180°
m∠ADM = 180° - 144°
= 36°
e). m∠ADC = 
= 
= 18°