Hertz is a measurement of the frequency that a wave is occurring.
Answer:
m = 0.111 kg
Explanation:
Heat required to release from the body of the person when his temperature cool down by 1 degree C is given as

here we know that
m = 70 kg
s = 3840 J/kg K

now we know that


now the same heat is used to vaporize water of the body
so it is given as



Answer:
Incomplete question
This is the complete question
For a magnetic field strength of 2 T, estimate the magnitude of the maximum force on a 1-mm-long segment of a single cylindrical nerve that has a diameter of 1.5 mm. Assume that the entire nerve carries a current due to an applied voltage of 100 mV (that of a typical action potential). The resistivity of the nerve is 0.6ohms meter
Explanation:
Given the magnetic field
B=2T
Lenght of rod is 1mm
L=1/1000=0.001m
Diameter of rod=1.5mm
d=1.5/1000=0.0015m
Radius is given as
r=d/2=0.0015/2
r=0.00075m
Area of the circle is πr²
A=π×0.00075²
A=1.77×10^-6m²
Given that the voltage applied is 100mV
V=0.1V
Given that resistive is 0.6 Ωm
We can calculate the resistance of the cylinder by using
R= ρl/A
R=0.6×0.001/1.77×10^-6
R=339.4Ω
Then the current can be calculated, using ohms law
V=iR
i=V/R
i=0.1/339.4
i=2.95×10^-4 A
i=29.5 mA
The force in a magnetic field of a wire is given as
B=μoI/2πR
Where
μo is a constant and its value is
μo=4π×10^-7 Tm/A
Then,
B=4π×10^-7×2.95×10^-4/(2π×0.00075)
B=8.43×10^-8 T
Then, the force is given as
F=iLB
Since B=2T
F=iL(2B)
F=2.95×10^-4×2×8.34×10^-8
F=4.97×10^-11N
Answer:
0.456033049
Explanation:
where N=mg hence
where m is mass of object, g is acceleration due to gravity whose value is taken as
,
is the coefficient of static friction and F is the applied force.
Making
the subject we obtain
and substituting m for 38 Kg, g for
and 170 N for F we obtain

Therefore, the coefficient of static friction is 0.456033049
Answer: The angle between the wire segment and the magnetic field 66.42°
Explanation:
Please see the attachment below