Answer:
V is approximately 1.52 liters
The work done on the gas = 37 J
Explanation:
The given information are;
Type of gas = Monoatomic gas
p₁ = 1 atm = 101325 Pa
v₁ = 1 liter = 0.001 m³
T₁ = 373 K
v₂ = 2 liters = 0.002 m³
Final volume = V
For isothermal expansion, we have, Boyle's law given as follows;
p₁×v₁ = p₂×v₂
∴ p₂ = p₁×v₁/(v₂)
p₂ = 1 atm × (1 liter)/(2 liters) = 0.5 atm = 50,662.5 Pa
We have for adiabatic compression, we have;
At V, P = p₂ = 0.5 atm (The gas is cooled at constant pressure) and can be reversed back adiabatically to p₁, v₁
Therefore we have;
![\dfrac{p_1}{p_2} = \left [\dfrac{V}{v_1} \right ]^\gamma](https://tex.z-dn.net/?f=%5Cdfrac%7Bp_1%7D%7Bp_2%7D%20%20%3D%20%5Cleft%20%5B%5Cdfrac%7BV%7D%7Bv_1%7D%20%5Cright%20%5D%5E%5Cgamma)
γ = 1.66 for a monoatomic gas, which gives;
![\dfrac{1 \ atm}{0.5 \ atm} = \left [\dfrac{V}{1 \ liter} \right ]^{1.66}](https://tex.z-dn.net/?f=%5Cdfrac%7B1%20%5C%20atm%7D%7B0.5%20%5C%20atm%7D%20%20%3D%20%5Cleft%20%5B%5Cdfrac%7BV%7D%7B1%20%5C%20liter%7D%20%5Cright%20%5D%5E%7B1.66%7D)
![V = 1 \ liter \times \sqrt[1.66]{\dfrac{1 \ atm}{0.5 \ atm}} = 1 \ liter \times \sqrt[1.66]{2} \approx 1.52 \ liters](https://tex.z-dn.net/?f=V%20%3D%201%20%5C%20liter%20%5Ctimes%20%5Csqrt%5B1.66%5D%7B%5Cdfrac%7B1%20%5C%20atm%7D%7B0.5%20%5C%20atm%7D%7D%20%3D%201%20%5C%20liter%20%5Ctimes%20%20%5Csqrt%5B1.66%5D%7B2%7D%20%20%5Capprox%201.52%20%5C%20liters)
V ≈ 1.52 liters = 0.00152 m³
The total work done is given given by the following relation;

![K = p \times v^{\gamma } = 0.5 \times \sqrt[1.66]{2} ^{1.66 } = 50,662.5 \times (0.00152)^{1.66} \approx 1.06\ Pa \cdot m^{4.98}](https://tex.z-dn.net/?f=K%20%3D%20p%20%5Ctimes%20v%5E%7B%5Cgamma%20%20%7D%20%3D%200.5%20%5Ctimes%20%5Csqrt%5B1.66%5D%7B2%7D%20%5E%7B1.66%20%20%7D%20%3D%2050%2C662.5%20%5Ctimes%20%280.00152%29%5E%7B1.66%7D%20%5Capprox%20%201.06%5C%20Pa%20%5Ccdot%20m%5E%7B4.98%7D)

Given that the work done is positive, we have that work is done in the gas
The work done on the gas = 37 J.