<u>Answer:</u> The correct answer is Option A.
<u>Explanation:</u>
Standard enthalpy of formation is the change in enthalpy of one mole of a substance present at the standard state that is 1 atm of pressure and 298 K of temperature. The substance is formed from its pure elements under the same conditions.
We are given a chemical compound having chemical formula 
This compound is formed by the combination of calcium, nitrogen and oxygen elements.
The chemical equation for the formation of
from the components in their standard states follows:

Hence, the correct answer is Option A.
Answer:
From the following enthalpy of reaction data and data in Appendix C, calculate ΔH∘f for CaC2(s): CaC2(s)+2H2O(l)→Ca(OH)2(s)+C2H2(g)ΔH∘=−127.2kJ
ΔHf°(C2H2) = 227.4 kJ/mol
ΔHf°(H2O) = -285.8 kJ/mol and
ΔHf°(Ca(OH)2) = -985.2 kJ/mol
(Ans)
ΔHf° of CaC2 = -59.0 kJ/mol
Explanation:
CaC2(s) + 2 H2O(l) → Ca(OH)2(s) + C2H2 (g) = −127.2kJ
ΔHrxn = −127.2kJ
ΔHrxn = ΔHf°(C2H2) + ΔHf°(Ca(OH)2) - ΔHf°(CaC2)- 2ΔHf°(H2O);
ΔHf°(CaC2) = ΔHf°(C2H2) + ΔHf°(Ca(OH)2) - 2ΔHf°(H2O) – ΔHrxn
Where
ΔHf°(C2H2) = 227.4 kJ/mol
ΔHf°(H2O) = -285.8 kJ/mol and
ΔHf°(Ca(OH)2) = -985.2 kJ/mol
ΔHf°(CaC2) =227.4 - 985.2 + 2x285.8 + 127.2 = -59.0 kJ/mol
ΔHf°(CaC2) = -59.0 kJ/mol
Answer:
The energy difference between these 2p and 2s orbitals is 
Explanation:
Wavelength of the photon emitted = 
Energy of the photon will corresponds to the energy difference between 2p and 2s orbital = E
Energy of the photon is given by Planck's equation:

h = Planck's constant = 
c = Speed of the light = 


The energy difference between these 2p and 2s orbitals is 
Answer:
The temperature difference of the body after 3 hours = 5.16 K
Explanation:
we know that the number of moles of O₂ inhaled are 0.02 mole/min⁻¹
or, 1.2 mole.h⁻¹
The average heat evolved by the oxidation of foodstuffs is then:
⇒ Q avg =
= 7.2 kj.h⁻¹.Kg⁻¹
the heat produced after 3 h would be:
= 7.2 kj. h⁻¹.Kg⁻¹ x 3 h
= 21.6 kj. kg⁻¹
= 21.6 x 10³ j kg⁻¹
We know Qp = Cp x ΔT
Assume the heat capacity of the body is 4.18 J g⁻¹K⁻¹
⇒ ΔT = 
⇒ ΔT = 
⇒ ΔT = 5.16 K
Q = mΔT(Cp)
where Q = heat energy in J (joules),
m = mass in g, ΔT = change in temper. (°C),
Cp = heat capacity in J/(g°C)
Water has a higher heat capacity, meaning that once heat energy is absorbed, it holds that heat longer than bread. Also though, a higher heat capacity of water means that it takes more energy to heat it up.
I don't see any specific data listed for this lab??