Answer:
9×10,000+4×10 eauals to 90,040
You times the numerator by the numerator and the denominator by the denominator
thats all
Answer:
Answer is 0.25 to 0.5
Step-by-step explanation:
Let the linear function be 
and exponential function be 
x 0.25 0.5 0.75 1.0 1.25 1.5
y 0.25 0.5 0.75 1.0 1.25 1.5
Diff 0.25 0.25 0.25 0.25 0.25
e^x 1.29 1.65 2.12 2.72 3.49 4.48
Diff 0.36 0.47 0.60 0.77 0.99
Hence 0.36 to be nearer to 0.25, than other intervals
So answer is 0.25 to 0.5
Hello,
Here is the demonstration in the book Person Guide to Mathematic by Khattar Dinesh.
Let's assume
P=cos(a)*cos(2a)*cos(3a)*....*cos(998a)*cos(999a)
Q=sin(a)*sin(2a)*sin(3a)*....*sin(998a)*sin(999a)
As sin x *cos x=sin (2x) /2
P*Q=1/2*sin(2a)*1/2sin(4a)*1/2*sin(6a)*....
*1/2* sin(2*998a)*1/2*sin(2*999a) (there are 999 factors)
= 1/(2^999) * sin(2a)*sin(4a)*...
*sin(998a)*sin(1000a)*sin(1002a)*....*sin(1996a)*sin(1998a)
as sin(x)=-sin(2pi-x) and 2pi=1999a
sin(1000a)=-sin(2pi-1000a)=-sin(1999a-1000a)=-sin(999a)
sin(1002a)=-sin(2pi-1002a)=-sin(1999a-1002a)=-sin(997a)
...
sin(1996a)=-sin(2pi-1996a)=-sin(1999a-1996a)=-sin(3a)
sin(1998a)=-sin(2pi-1998a)=-sin(1999a-1998a)=-sin(a)
So sin(2a)*sin(4a)*...
*sin(998a)*sin(1000a)*sin(1002a)*....*sin(1996a)*sin(1998a)
= sin(a)*sin(2a)*sin(3a)*....*sin(998)*sin(999) since there are 500 sign "-".
Thus
P*Q=1/2^999*Q or Q!=0 then
P=1/(2^999)
445.76 * 9.634
use your calculator
answer is 4294.45184