Answer:
<h3>Q cuts the diagonal PA into 2 equal halves, since the diagonals of rhombus meet at right angles.</h3><h3>The value of x is 8.</h3>
Step-by-step explanation:
Given that Quadrilateral CAMP below is a rhombus. the length PQ is (x+2) units, and the length of QA is (3x-14) units
From the given Q is the middle point, which cut the diagonal PA into 2 equal halves.
By the definition of rhombus, diagonals meet at right angles.
Implies that PQ = QA
x+2 = 3x - 14
x-3x=-14-2
-2x=-16
2x = 16
dividing by 2 on both sides, we will get,

<h3>∴ x=8</h3><h3>Since Q cuts the diagonal PA into 2 equal halves, since the diagonals of rhombus meet at right angles we can equate x+2 = 3x-14 to find the value of x.</h3>
The line segment 


( since x=8)


<h3>∴

units</h3>
Answer:
When we do a scale model of something (like a building, a house, or whatever) al the properties of the original thing must also be in the model.
So for example, you want to do a model of a house, and in the backyard of the house there are 4 trees, then in the model of the house you also need to put 4 trees in the backyard (indifferent of the scale of the model).
Then the number of boulders in the really fountain should be the same as the number of boulders in the scale model of the fountain.
2.5y + 1.1x ∠ 10
2.5y = - 1.1x +10
y = (- 1.1/2.5)x + 4
Draw this function. It's descending (m negative). All values on the left of the lines satisfy this inequality