Answer:
Here the answer, dearie.
Step-by-step explanation:

So, 136 people can sit in cafeteria and the patio.
What we know:
quotient 9.2 x 10^6/ 2.3 x 10²
in quotients exponents are subtracted of they have the same base, for example 10^6 and 10² have the same base of 10
What we need to find: quotient 9.2 x 10^6/ 2.3 x 10²
9.2 x 10^6
-------------- = 4 x 10^4
2.3 x 10²
Here in this problem I divided 9.2 by 2.3 and got 4, since the solution was simple and clean meaning no repeated decimals I went ahead and divided the 10^6 by 10^2 and got 10^4.
Another method would be to expand both numbers then divide and do scientific notation again.
Remember to change to normal notation you move the decimal to the right using the number of the exponent.
9.2 x 10^6= 9200000
2.3 x 10²= 230
920000/230=40000
40000= 4 x 10^4 scientific notation
Use the method that is best for you or just know you can use either method to check your work.
The probability that Janet makes a free throw is given by:
P(f)=0.67
The simulation that will be used to design the possibility of her making 7 out of 8 free throws will be:
<span>D) Roll a die letting 1-4 represent Janet making a free throw and 5-6 represent Janet not falling. Roll the die eight times.
This is is because the probability of obtaining 1,2,3 or 4 from rolling a dice is
4/6=0.67 </span>
Answer:
99.85%
Step-by-step explanation:
The lifespans of meerkats in a particular zoo are normally distributed. The average meerkat lives 10.4 years; the standard deviation is 1.9 years.
Use the empirical rule (68-95-99.7%) to estimate the probability of a meerkat living less than 16.1 years.
Solution:
The empirical rule states that for a normal distribution most of the data fall within three standard deviations (σ) of the mean (µ). That is 68% of the data falls within the first standard deviation (µ ± σ), 95% falls within the first two standard deviations (µ ± 2σ), and 99.7% falls within the first three standard deviations (µ ± 3σ).
Therefore:
68% falls within (10.4 ± 1.9). 68% falls within 8.5 years to 12.3 years
95% falls within (10.4 ± 2*1.9). 95% falls within 6.6 years to 14.2 years
99.7% falls within (10.4 ± 3*1.9). 68% falls within 4.7 years to 16.1 years
Probability of a meerkat living less than 16.1 years = 100% - (100% - 99.7%)/2 = 100% - 0.15% = 99.85%
<span>Blocks numbered 0 through 9 are placed in a box, and a block is randomly picked.=3/10
</span><span>The probability of picking an odd prime number is . The probability of picking a number greater than 0 that is also a perfect square is=3/10</span>