Answer:

And we want to know what repreent the value 500 for this equation. If we see the general expression for an exponential function we have:

Where a is the constant or the initial amount, b te base and x the independnet variable (time)
For this special case we know that:

And 500 represent the constant or initial value for the function
Step-by-step explanation:
We have the following function given:

And we want to know what repreent the value 500 for this equation. If we see the general expression for an exponential function we have:

Where a is the constant or the initial amount, b te base and x the independnet variable (time)
For this special case we know that:

And 500 represent the constant or initial value for the function
From the given data, we can generate two equations with two unknowns.
We let x = number of loaves of bread
y = number of batches of muffins
For the equation of the flour requirement:
17 = 3.5x + 2.5y
<span>For the equation of the sugar requirement:
</span>4.5 = 0.75x + 0.75y
We evaluate the solutions by manipulating one of the equations into terms of the other. We use the first equation.We write x in terms of y.
x = (4.5/0.75) - y
Substitute the third equation to the second equation.
17 = (3.5((4.5/0.75)-y)) + 2.5y
Evaluating y and x, we have,
y = 4 and x = 2
Thus, from the amounts she has in hand, she can make 4 loaves of bread and 2 batches of muffins.
Answer:
The correct option is (A) $304.47.
Step-by-step explanation:
The formula to compute the future value (<em>FV</em>) of an amount (A), compounded daily at an interest rate of <em>r</em>%, for a period of <em>n</em> years is:
![FV=A\times [1+\frac{r\%}{365}]^{n\times 365}](https://tex.z-dn.net/?f=FV%3DA%5Ctimes%20%5B1%2B%5Cfrac%7Br%5C%25%7D%7B365%7D%5D%5E%7Bn%5Ctimes%20365%7D)
The information provided is:
A = $300
r% = 1.48%
n = 1 year
Compute the future value as follows:
![FV=A\times [1+\frac{r\%}{365}]^{n\times 365}](https://tex.z-dn.net/?f=FV%3DA%5Ctimes%20%5B1%2B%5Cfrac%7Br%5C%25%7D%7B365%7D%5D%5E%7Bn%5Ctimes%20365%7D)
![=300\times [1+\frac{0.0148}{365}]^{365}\\\\=300\times (1.00004055)^{365}\\\\=300\times 1.014911\\\\=304.4733\\\\\approx \$304.47](https://tex.z-dn.net/?f=%3D300%5Ctimes%20%5B1%2B%5Cfrac%7B0.0148%7D%7B365%7D%5D%5E%7B365%7D%5C%5C%5C%5C%3D300%5Ctimes%20%281.00004055%29%5E%7B365%7D%5C%5C%5C%5C%3D300%5Ctimes%201.014911%5C%5C%5C%5C%3D304.4733%5C%5C%5C%5C%5Capprox%20%5C%24304.47)
Thus, the balance after 1 year is $304.47.
The correct option is (A).
Answer:
first option
Step-by-step explanation:
The equation representing a proportional relationship is
y = kx ← k is the constant of proportion
Here k = 0.7, thus
y = 0.7x ← is the required equation
Given
=
( cross- multiply )
10y = 7x ( divide both sides by 10 )
y =
x = 0.7 x ← the required equation