CaCl2(aq) + K2CO3(aq) → 2 KCl(aq) + CaCO3(aq)
1.12 g
2.23 g
0.896 g
4.47 g
1.12 g
Hope it helps :)
% yield = 80.719
<h3>Further explanation</h3>
Given
22.0 g of Mgl₂
25.0 g of Mg
25.0 g of l₂
Required
The percent yield
Solution
Reaction
Mg + I₂⇒ MgI₂
mol Mg = 25 g : 24.305 g/mol = 1.029
mol I₂ = 25 g : 253.809 g/mol = 0.098
Limiting reactant = I₂
Excess reactant = Mg
mol MgI₂ based on I₂, so mol MgI₂ = 0.098
Mass MgI₂ (theoretical):
= mol x MW
= 0.098 x 278.114
= 27.255 g
% yield = (actual/theoretical) x 100%
% yield = (22 / 27.255) x 100%
% yield = 80.719
Answer:
The K sp Value is 
Explanation:
From the question we are told that
The of
is = 122.5 g/ mol
The mass of
dissolved is 
The volume of solution is 
The number of moles of
is mathematically evaluated as

Substituting values


Generally concentration is mathematically represented as
For


The dissociation reaction of
is

The solubility product constant is mathematically represented as

Since there is no ionic reactant we have
![K_{sp} = [k^+] [ClO_3^-]](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%20%5Bk%5E%2B%5D%20%5BClO_3%5E-%5D)



Answer:Mass of Potassium chloride =1.762g
Explanation:
Mass of empty beaker = 23.100 g
Mass of beaker with Potassium chloride = 24.862g
Mass of Potassium chloride = Final weight - initial weight = Mass of beaker with Potassium chloride - Mass of empty beaker = 24.862-23.100 = 1.762g
Answer:
190 mmHg
Explanation:
According to Dalton's law, in a mixture of ideal gases, each gas behaves independently of the other. Also, the total pressure is equal to the sum of the individual partial pressures.
The total pressure of the mixture is 470 mmHg , and the partial pressure of nitrogen is 280 mmHg. Then,
P = pO₂ + pN₂
pO₂ = P - pN₂
pO₂ = 470 mmHg - 280 mmHg
pO₂ = 190 mmHg