You must add 7.5 pt of the 30 % sugar to the 5 % sugar to get a 20 % solution.
You can use a modified dilution formula to calculate the volume of 30 % sugar.
<em>V</em>_1×<em>C</em>_1 + <em>V</em>_2×<em>C</em>_2 = <em>V</em>_3×<em>C</em>_3
Let the volume of 30 % sugar = <em>x</em> pt. Then the volume of the final 20 % sugar = (5 + <em>x</em> ) pt
(<em>x</em> pt×30 % sugar) + (5 pt×5 % sugar) = (<em>x</em> + 5) pt × 20 % sugar
30<em>x</em> + 25 = 20x + 100
10<em>x</em> = 75
<em>x</em> = 75/10 = 7.5
I don't know but I'm wasting 5 seconds of your time you can't take back sorry
Answer:
See the explanation
Explanation:
1) The Lewis structure for
has a central Carbon<em> </em>atom attached to Oxygen atoms.
In the
we will have a structure: O=C=O the <u>central atom</u> "carbon" we will have <u>2 sigma bonds and 2 pi bonds</u>, therefore, we have an <u>Sp hybridization</u>. For O we have <u>1 pi and 1 sigma bond</u>, therefore, we have an <u>Sp2 hybridization</u>.
2) These atoms are held together by <u>double bonds.</u>
<u></u>
Again in the structure of
: O=C=O we only have double bonds.
3. Carbon dioxide has a Carbon dioxide has a <u>Linear</u> electron geometry.
Due to the double bonds we have to have a linear structure because in this geometry the atoms will be further apart from each other.
4. The carbon atom is <u>Sp</u> hybridized.
We will have for carbon 2 pi bonds, so we will have an <u>Sp</u> hybridization.
5. Carbon dioxide has two Carbon dioxide has two C(p) - O(p) π bonds and two C(sp) - O(Sp2) σ bonds.
(See figures)
Figure 1: Carbon hybridization
Figure 2: Oxygen hybridization
<span>The test dummy will continue forward until it makes contact with another object.</span>
Answer:D
Explanation:because The farther an object is from a magnet are apart from each other, the weaker the repulsion force will be.