Answer:
Mass = 6.183 g
Solution:
Step 1: Calculate number of moles of Boric acid using following formula,
Molarity = Moles ÷ Volume
Solving for Moles,
Moles = Molarity × Volume
Putting Values,
Moles = 0.05 mol.L⁻¹ × 2.0 L
Moles = 0.1 mol
Step 2: Calculate Mass of Boric Acid using following formula,
Moles = Mass ÷ M.mass
Solving for Mass,
Mass = Moles × M.mass
Putting values,
Mass = 0.1 mol × 61.83 g.mol⁻¹
Mass = 6.183 g
Flask used to prepare this solution is called as Volumetric flask. Take 2 L volumetric flask, add 6.183 g of Boric acid and fill it to the mark with distilled water.
Answer: the bonds in the methane and oxygen come apart, the atoms rearrange and then re-bond to form water and carbon dioxide
Explanation:^
500 water molecules and the remaining 500 O2 molecules. Remember the ratio of H to O in H2O.
Maybe 24% not sure try researching it on google
When solid aluminum metal is reacted with diatomic chlorine gas, solid aluminum chloride is formed. This reaction is an example of synthesis or chemical combination in which two elements, aluminum and chlorine combine to form a new compound aluminum chloride.
Word equation: Aluminum (s)+ Chlorine (g)---> Aluminum chloride(s)
Molecular formula of the product formed is
.
Therefore the balanced chemical equation representing the reaction of solid aluminum with gaseous dichlorine can be represented as,
