Answer:
pHe = 3.2 × 10⁻³ atm
pNe = 2.5 × 10⁻³ atm
P = 5.7 × 10⁻³ atm
Explanation:
Given data
Volume = 1.00 L
Temperature = 25°C + 273 = 298 K
mHe = 0.52 mg = 0.52 × 10⁻³ g
mNe = 2.05 mg = 2.05 × 10⁻³ g
The molar mass of He is 4.00 g/mol. The moles of He are:
0.52 × 10⁻³ g × (1 mol / 4.00 g) = 1.3 × 10⁻⁴ mol
We can find the partial pressure of He using the ideal gas equation.
P × V = n × R × T
P × 1.00 L = 1.3 × 10⁻⁴ mol × (0.082 atm.L/mol.K) × 298 K
P = 3.2 × 10⁻³ atm
The molar mass of Ne is 20.18 g/mol. The moles of Ne are:
2.05 × 10⁻³ g × (1 mol / 20.18 g) = 1.02 × 10⁻⁴ mol
We can find the partial pressure of Ne using the ideal gas equation.
P × V = n × R × T
P × 1.00 L = 1.02 × 10⁻⁴ mol × (0.082 atm.L/mol.K) × 298 K
P = 2.5 × 10⁻³ atm
The total pressure is the sum of the partial pressures.
P = 3.2 × 10⁻³ atm + 2.5 × 10⁻³ atm = 5.7 × 10⁻³ atm
Given mass of KNO₃=346g
Molar mass of KNO₃=(39.098)+(14)+(15.99*3)=101.068gmol⁻¹
Volume of Solution=750ml=0.75dm³
Molarity=(mass of solute/molar mass of solute)*(1/volume of sol. in dm³)
=(346/101.068)*(1/0.75)
=4.56 mol dm⁻³
The question is incomplete, the complete question is;
The table above summarizes data given to a student to evaluate the type of change that took place when substance X was mixed with water. The student claimed that the data did not provide enough evidence to determine whether a chemical or physical change took place and that additional tests were needed. Which of the following identifies the best way to gather evidence to support the type of change that occurred when water and Xwere mixed?
A. Measuring the melting point of the mixture of water and X
B. Adding another substance to the mixture of water and X to see whether a solid forms
C Measuring and comparing the masses of the water, X, and the mixture of water and X
D Measuring the electrical conductivities of X and the mixture of water and X
Answer:
D Measuring the electrical conductivities of X and the mixture of water and X
Explanation:
Unfortunately, I am unable to reproduce the table here. However, from the table, the temperature of the of the mixture of the solid X and water was 101.6°C. This is above the boiling point of water and way below the temperature of the solid X.
This goes a long way to suggest that there was some kind of interaction between the water and X which accounted for the observed temperature of the system of X in water.
The only way we can be able to confirm if X actually dissolved in water is to measure the conductivity of the water. dissolved solids increase the conductivity of water.
Answer:
1. Percentage composition of: Na = 42%; P = 19.0%; O = 39%
2. Simplest formula of compound is PbO₂
3. (i) 2Cu(NO₃) ---> 2CuO + 2NO₂ + 3O₂
(ii) 2C₂H₆ + 7O₂ ---> 4CO₂ + 6H₂O
(iii) Mg₃N₂ + 6H₂O ---> 3Mg(OH)₂ + 2NH₃
4. 48 g of MG will react with 2 moles of Cl₂
5. 0.288 g of SO2 will be produced from the combustion of 0.331 g P₄S₃ in excess O₂
6. 12.8 g of nitric oxide can be produced from the reaction of 8.00 g NH₃ with 17.0 g O₂
7. The stock acid solution should be diluted to 6000 mL or 6.0 L
Explanation:
The full explanation is found in the attachments below
Answer is: sucrose is more soluble in water.
Solubility of sucrose (C₁₂H₂₂O₁₁) is about 2000 g in one liter of water (25°C) and solubility of lauric acid (C₁₂H₂₄O₂) is approximately 0,06 g approximately.
That is because sucrose has stronger intermolecular forces (hydrogen bond), Sucrose has more oxygen, more oxygen means more intermolecular bond with hydrogen.