At 15.2°C. Kinetic energy of molecules highly depends on the temperature — the warmer it is, the faster the molecules will move, especially in fluids (gases and liquids). If we consider that the formula for average kinetic energy of molecules is:
Ek = 3/2*k*T where k is Boltzmanns constant and 3/2 is, well, 3/2, kinetic energy of molecules really only depends on the temperature.
Answer:
1. Gases can be easily liquefied into very small volumes and stored in liquid form Eg in LPGA cylinders and used in homes.
2. Balloons can be easily filled with air.
Answer: the HCO3- to act as a base and remove excess H by the formation of H2CO3
Explanation:
H2CO3 in an aqueous solution is a buffer. This means the reaction is the following:
H2CO3 ------ HCO3- + H+
Then, the HCO3- that was formed acts as a base (absorbing a proton) like this
HCO3- + H+ ------- H2CO3
If there was an increase in H+, there would be an increase in the second reaction in an effort to neutralize that acid, thus making the H2CO3 more concentrated
Explanation:
For the given values of
we will have the values of
as follows.
As, 
Therefore,
= 2.15,
= 7.20
= 12.38
Now, at pH 6.50
;
At pH = 2.15;
;
At pH 7.20;
;
Hence, we can conclude that most abundant species is
and the second most abundant species is
.
Answer:
2.65 M
Explanation:
Convert grams of K₂CO₃ to moles. The molar mass is 138.205 g/mol.
(110 g)/(138.205 g/mol) = 0.796 mol
Convert milliliters of solution to liters.
300 mL = 0.300 L
Divide moles of K₂CO₃ by liters of solution.
0.796 mol/0.300 L = 2.65 mol/L = 0.265 M