Answer:
The water potential of a solution of 0.15 M sucrose solution is -3.406 bar.
Explanation:
Water potential = Pressure potential + solute potential


We have :
C = 0.15 M, T = 273.15 K
i = 1
The water potential of a solution of 0.15 m sucrose= 
(At standard temperature)


The water potential of a solution of 0.15 M sucrose solution is -3.406 bar.
Answer:
D
Explanation:
solution made by mixing 100 mL of 0.100 M HClO and 50 mL of 0.100 M NaOH Can resist pH change when there is little addition of either acid or base, hence it is a buffer solution
The model would look something like the image below.
There would be a <em>central nucleus</em> containing <em>20 protons</em> and <em>20 neutrons</em>.
Surrounding the nucleus would be four concentric rings (energy levels) containing <em>20 electron</em>s.
Going out from the nucleus, the number of electrons in each ring would
be <em>2, 8, 8, 2</em>.
Answer:
9.2x10²g
Explanation:
Data obtained from the question include the following:
Density = 0.92g/ml
Volume = 1L = 1 x 1000 = 1000mL
Mass =..?
Density is simply defined as the mass of the substance per unit volume of the substance. Mathematically it can be represented as:
Density = Mass /volume.
Mass = Density x volume
Mass = 0.92 x 1000
Mass = 9.2x10²g.
Therefore, 1L of olive will weigh 9.2x10²g.
The most important question for the students to answer is what the discovery did to society. Did it change society in any way or better something?