Answer:
The centripetal force acting on the skater is <u>48.32 N.</u>
Explanation:
Given:
Radius of circular track is, 
Tangential speed of the skater is, 
Mass of the skater is, 
We are asked to find the centripetal force acting on the skater.
We know that, when an object is under circular motion, the force acting on the object is directly proportional to the mass and square of tangential speed and inversely proportional to the radius of the circular path. This force is called centripetal force.
Centripetal force acting on the skater is given as:

Now, plug in the given values of the known quantities and solve for centripetal force,
. This gives,

Therefore, the centripetal force acting on the skater is 48.32 N.
Answer:
3.52 m/s
Explanation:
work done by the compressing the spring = 1/2 K e² where K is the force constant = 1000 N/m, e is the compression = 2cm = (2 / 100) to convert it to m we divide by 100 = 0.02 m
work done by compressing the spring = elastic potential energy stored in the spring = 0.5 × 1000 × 0.02 = 10 J
work done by force of friction to hinder the motion = F × d = 4 × 0.02 m = 0.08 J
Kinetic energy of the body = work done by compressing the spring - work done by force of friction against the motion = 10 - 0.08 = 9.92
9.92 = 1/2 m v² where m is the mass of the body which = 1.6 kg and v is the speed as it passes through the equilibrium point
9.92 = 1/2 × 1.6 × v²
9.92 × 2 / 1.6 = v²
v² = 19.84 / 1.6 = 12.4
v = √12.4 = 3.52 m/s
Answer:
The workdone is 
Explanation:
The free body diagram is shown on the first uploaded image
From the question we are given that
The force is on the force gauge 
The distance that Magnus pulled the bus
Generally the workdone by the tension force on Magnus is


This negative sign show that is tension force is in the opposite direction to Magnus movement (i.e the movement of the bus )
Substituting value we have


Answer: A. Greater than 384 Hz
Explanation:
The velocity of sound is directly related to the temperature rather it is directly proportional meaning if the temperature decreases the velocity decreases and if temperature increases the velocity increases.
Now, we are given that temperature has risen from 20°C to 25°C meaning it has increases. So it implies that velocity must also increase.
Also, the velocity for organ pipe is directly proportional to its frequency. Now if velocity increases frequency must also increase. In this case, the original frequency is 384 Hz. Now increasing the temperature resulted in increase in velocity and thus increase in frequency.
So option a is correct. i.e. now frequency will be greater than 384 Hz.
Answer:
ρ = 830.32 kg/m³
Explanation:
Given that
Oil head = 12.2 m
h= 12.2 m
Pressure P = 1.013 x 10⁵ Pa
Lets take density of the liquid =ρ
The pressure due to liquid P given as
P = ρ g h
Now by putting the all values in the above equation
1.013 x 10⁵ Pa = ρ x 10 x 12.2 ( take g =10 m/s²)
ρ = 830.32 kg/m³
Therefore the density of oil is 830.32 kg/m³