Answer is: 48,25 torr.
Raoult's Law: p = x(solv) · p(solv)
p - <span>vapour pressure of a solution.
</span>x(solv) - <span>mole fraction of the solvent.
</span>p(solv) - <span>vapour pressure of the pure solvent.
</span>n(ethanol) = 950g ÷ 46,07g/mol = 20,62 mol.
x(solv) = moles of solvent ÷ total number of moles
x(solv) = 20,62 ÷ 21,77 = 0,965.
p = 0,965 ·50,0 torr = 48,25 torr.
Answer:
Explanation:
It will be better to use solvents that are lighter than water, because their density has an influence on the miscibility . This will give you a better separation during extraction.
Answer:

Explanation:
HCl + NaOH ⟶ NaCl + H₂O
There are two energy flows in this reaction.
Heat of reaction + heat to warm water = 0
q₁ + q₂ = 0
q₁ + mCΔT = 0
Data:
m(HCl) = 50 g
m(NaOH) = 50 g
T₁ = 22 °C
T₂ = 28.87 °C
C = 4.18 J·°C⁻¹g⁻¹
Calculations:
m = 50 + 50 = 100 g
ΔT = 28.87 – 22 = 6.9 °C
q₂ = 100 × 4.18 × 6.9 = 2900 J
q₁ + 2900 = 0
q₁ = -2900 J
The negative sign tells us that the reaction produced heat.
The reaction produced
.
Answer:
We have to take 37.5 mL of a 0.400 M solution
Explanation:
Step 1: Data given
Stock volume = 100 mL = 0.100L
Stock concentration 0.400 M
Volume of solution he wants to make = 100 mL = 0.100L
Concentration of solution he wants to make = 0.150 M
Step 2: Calculate the volume of 0.400 M CuSO4 needed
C1*V1 = C2*V2
⇒with C1 = the stock concentration = 0.400M
⇒with V1 = the volume of the stock = TO BE DETERMINED
⇒with C2 = the concentration of the solution he wants to make = 0.150 M
⇒with V2 = the volume of the solution made = 0.100 L
0.400 M * V1 = 0.150M * 0.100L
V1 = (0.150M*0.100L) / 0.400 M
V1 = 0.0375 L = 37.5 mL
We have to take 37.5 mL of a 0.400 M solution