By determining the length of TV using TV^2=15^2+10^2-2(15)(10)cos80, and then determining the value of x using 15^2=TV^2+10^2-2(TV)(10)cosx.
Answer:
1) The linear regression model is y = -0.0348·x + 13.989
2) The correlation coefficient is -0.0725
3) The strength of the model is strong - association
Step-by-step explanation:
1)
X Y XY X²
27 13 351 729
65 12 780 4225
83 11 913 6889
109 10 1090 11881
142 9 1278 20164
175 8 1400 30625
∑ 601 63 5812 74513
From y = ax + b, we have

b = 1/n(∑y -a∑x) = 1/6(63 - (0.0348)×601) = 13.989
Therefore, the linear regression model is y = -0.0348·x + 13.989
2)
![r = \frac{n\sum xy - \sum x\sum y }{\sqrt{[n\sum x^{2}-\left (\sum x \right )^{2}] [n\sum y^{2}-\left (\sum y \right )^{2}]}} = \frac{6 \times 5812 - 601 \times 63}{\sqrt{[6 \times 74513-601^{2}] [6 \times 3969 - 63^2]} } = - 0.0725](https://tex.z-dn.net/?f=r%20%3D%20%5Cfrac%7Bn%5Csum%20xy%20-%20%5Csum%20x%5Csum%20y%20%7D%7B%5Csqrt%7B%5Bn%5Csum%20x%5E%7B2%7D-%5Cleft%20%28%5Csum%20x%20%20%5Cright%20%29%5E%7B2%7D%5D%20%5Bn%5Csum%20y%5E%7B2%7D-%5Cleft%20%28%5Csum%20y%20%20%5Cright%20%29%5E%7B2%7D%5D%7D%7D%20%20%3D%20%5Cfrac%7B6%20%5Ctimes%205812%20%20-%20601%20%5Ctimes%2063%7D%7B%5Csqrt%7B%5B6%20%5Ctimes%2074513-601%5E%7B2%7D%5D%20%5B6%20%20%5Ctimes%203969%20-%2063%5E2%5D%7D%20%7D%20%3D%20-%200.0725)
3) The strength is - association.
So if 32 oz is 20% more than the average bottle, you multiply 32 by .20 which gives you 6.4. This means that the 32 oz bottle is 6.4 oz more than the regular bottle. Furthermore, 32 - 6.4 = 25.6 so that's how big the typical bottle is.
Step-by-step explanation:
A is the correct answer of this question