answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Maslowich
1 year ago
6

Suppose 550 g of water at 32 degrees * C is poured into a 210 - g aluminum can with an initial temperature of 15 degrees * C . F

ind the final temperature of the system, assuming that no thermal energy is exchanged with the surroundings.
Physics
1 answer:
madam [21]1 year ago
6 0

Answer:

about 30.714degC

Explanation:

Assuming

specific heat of water at  4200 J/kg * K

specific heat of aluminum 900 J/kg * K

(actual values to higher precision differ, and also change slightly with temperature).

To raise the aluminum's temp by 1K we need 900J * (210g / 1kg) = 189J

189J given by the water decreases its temp by 1K * (189J / 4200J) * (1kg / 550g) = 0.0(81)K.

So every K the temp of aluminum rises, 0.0(81)K falls the temp of the water.

At a difference of (32degC - 15degC) = 17K, we infer the temp will balance out after 17K / (1K + 0.0(81)K) "steps", so about 15.714.

The final temperature will be around 30.714degC

You might be interested in
If a key is pressed on a piano, the frequency of the resulting sound will determine the ________, and the amplitude will determi
MakcuM [25]

Answer:

If a key is pressed on a piano, the frequency of the resulting sound will determine the ___PITCH_____, and the amplitude will determine the _____LOUDNESS___ of the perceived musical note.

Explanation:

The frequency of a vibrating string is primarily based on three factors:

The sounding length (longer is lower, shorter is higher)

The tension on the string (more tension is higher, less is lower)

The mass of the string, normally based on a uniform density per unit length (higher mass is lower, lower mass is higher)

To make a shorter string (such as in an upright piano) sound the same fundamental frequency as a longer string (such as in a 9' grand piano), either the thickness of the string must be increased (which increases the density and the mass) or the tension must be decreased, and usually it's a bit of both.

Thicker strings are often stiffer and that creates more inharmonic partials, and lower tension is associated with other problems, so the best way to make a string sound lower is the make it longer, but it is not practical to make a piano from strings that are all the same density and tension, because the lowest strings would have to be ridiculously long. Nine feet is already a great demand on space for a single musical instrument, and of course those pianos are extremely expensive and difficult to move.

And alsoBesides the pitch of a musical note, perhaps the most noticeable feature in how loud the note is. The loudness of a sound wave is determined from its amplitude. While loudness is only associated with sound waves, all types of waves have an amplitude. Waves on a calm ocean may be less than 1 foot high. Good surfing waves might be 10 feet or more in amplitude. During a storm the amplitude might increase to 40 or 50 feet.

Many things can influence the amplitude.

What is producing the sound?

How far are you from the source of the sound? The farther away the smaller the amplitude.

Intervening material. Sound does not travel through walls as well as air.

Depends on what is detecting the wave sound. Ear vs. microphone.

5 0
2 years ago
Read 2 more answers
In the diagram below, what is the property of the wave indicated by the letter A? a.Crest
Ugo [173]
Do you have a picture of the diagram that I could view?
4 0
2 years ago
Read 2 more answers
Some drops a ball off of the top of a 125-m-tall building. In this prob-lem, you will be solving for the time it takes the ball
Nimfa-mama [501]

Answer:

t = 5.05 s

Explanation:

This is a kinetic problem.

a) to solve it we must fix a reference system, let's use a fixed system on the floor where the height is 0 m

b) in this system the equations of motion are

              y = v₀ t + ½ g t²

where v₀ is the initial velocity that is v₀ = 0 and g is the acceleration of gravity that always points towards the center of the Earth

e)    y = 0 + ½ g t²

     t = √ (2y / g)

     t = √(2 125 / 9.8)

     t = 5.05 s

6 0
2 years ago
A block of mass m begins at rest at the top of a ramp at elevation h with whatever PE is associated with that height. The block
melomori [17]

This question is incomplete, the complete question is;

A block of mass m begins at rest at the top of a ramp at elevation h with whatever PE is associated with that height. The block slides down the ramp over a distance d until it reaches the bottom of the ramp.

How much of its original total energy (in J) survives as KE when it reaches the ground? m = 9.9 kg h = 4.9 m d = 5 m μ = 0.3 θ = 36.87°

Answer:

the amount of its original total energy (in J) that survives as KE when it reaches the ground will is 358.975 J

Explanation:

Given that;

m = 9.9 kg

h = 4.9 m

d = 5 m

μ = 0.3

θ = 36.87°

Now from conservation of energy, the energy is;

Et = mgh

we substitute

Et = 9.9 × 9.8 × 4.9

= 475.398 J

Also the loss of energy i

E_loss = (umg cosθ) d

we substitute

E_loss  = 0.3 × 9.9 × 9.8 × cos36.87°  × 5

= 116.423 J

so the amount of its original total energy (in J) that survives as KE when it reaches the ground will be

E = Et - E_loss

E = 475.398 J - 116.423 J

E = 358.975 J

5 0
2 years ago
A 5.5Kg block is hanging from a rope that is wrapped around the outside of a 13Kg flywheel disk witha radius of 33cm that is hag
Sergeeva-Olga [200]

Answer:

3.9m/s^{2}

Explanation:

Using second law of motion

a =\frac {m1 * g - \frac {T}{r}}{m1 + 0.5 * m2} where m1 is mass of block, m2 is mass of flywheel, g is acceleration due to gravity whose value is taken as 9.81 m/s^{2}, T is torque and r is radius

Substituting 5.5 Kg for m1, 13 Kg for m2, 0.33 m for r, 2.5 Nm for T we obtain

a = \frac {5.5 \times 9.81 - \frac {2.5}{0.33}}{(5.5 + 0.5 \times13)}=3.9m/s^{2}

8 0
2 years ago
Other questions:
  • An ant travels 2.78 cm [W] and then turns and travels 6.25 cm [S 40 degrees E]. What is the ant's total displacement?
    14·1 answer
  • The total energy of a 0.050 kg object travelling at 0.70 c is
    13·1 answer
  • A cave explorer travels 3.0 m eastward, then 2.5 m northward, and finally 15.0 m westward. use the graphical method to find the
    8·2 answers
  • Mark and Balthazar are preparing to conduct neutralization reactions in which they add a base to two different solutions, citric
    7·2 answers
  • Four students measured the acceleration of gravity. The accepted value for their location is 9.78 m/s2. Which student's measurem
    9·2 answers
  • Optical tweezers use light from a laser to move single atoms and molecules around. Suppose the intensity of light from the tweez
    13·1 answer
  • A cyclist moving towards right with an acceleration of 4m/s² at t = 0 he has travelled 5 m moving towards the right at 15 m/s wh
    7·1 answer
  • A physics student shoves a 0.50-kg block from the bottom of a frictionless 30.0° inclined plane. The student performs 4.0 j of w
    8·1 answer
  • A beam of electrons is sent horizontally down the axis of a tube to strike a fluorescent screen at the end of the tube. On the w
    6·1 answer
  • A block is projected with speed v across a horizontal surface and slides to a stop due to friction. The same block is then proje
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!