Answer:
It will depend whether is function time dependent or not.
Step-by-step explanation:
If the function is time dependent, the function with greatest initial values continue to be greatest as time increases.
Given:


To find:
The rate of change in volume at 
Solution:
We know that, volume of a cone is

Differentiate with respect to t.
![\dfrac{dV}{dt}=\dfrac{1}{3}\pi\times \left[(r^2\dfrac{dh}{dt}) + h(2r\dfrac{dr}{dt})\right]](https://tex.z-dn.net/?f=%5Cdfrac%7BdV%7D%7Bdt%7D%3D%5Cdfrac%7B1%7D%7B3%7D%5Cpi%5Ctimes%20%5Cleft%5B%28r%5E2%5Cdfrac%7Bdh%7D%7Bdt%7D%29%20%2B%20h%282r%5Cdfrac%7Bdr%7D%7Bdt%7D%29%5Cright%5D)
Substitute the given values.
![\dfrac{dV}{dt}=\dfrac{1}{3}\times \dfrac{22}{7}\times \left[(120)^2(-2.1) +175(2)(120)(1.4)\right]](https://tex.z-dn.net/?f=%5Cdfrac%7BdV%7D%7Bdt%7D%3D%5Cdfrac%7B1%7D%7B3%7D%5Ctimes%20%5Cdfrac%7B22%7D%7B7%7D%5Ctimes%20%5Cleft%5B%28120%29%5E2%28-2.1%29%20%2B175%282%29%28120%29%281.4%29%5Cright%5D)
![\dfrac{dV}{dt}=\dfrac{22}{21}\times \left[-30240+58800\right]](https://tex.z-dn.net/?f=%5Cdfrac%7BdV%7D%7Bdt%7D%3D%5Cdfrac%7B22%7D%7B21%7D%5Ctimes%20%5Cleft%5B-30240%2B58800%5Cright%5D)


Therefore, the volume of decreased by 29920 cubic inches per second.
Answer:
If s(x) = x – 7 and t(x) = 4x2 – x + 3, which expression is equivalent to (t*s)(x)? 4(x – 7)2 – x – 7 + 3 4(x – 7)2 – (x – 7) + 3 (4x2 – x + 3) – 7 (4x2 – x + 3)(x – 7)
What is the question?
I'm assuming it is to find the length and width.
+_= plus or minus
(X+36)
____________
| |
(X) | |
|____________|
X^2+36X-2040<0
X<-36+_(36^2-4*-2040)^(1/2)
-----------------------------------
2
X<-18+_2((591)^(1/2))
This is probably not what you wanted, sorry