Answer:
–90 < –32t – 10 < –58
Step-by-step explanation:
We want the velocity to be BETWEEN -90 and -58.
Whenever we need a quantity, let it be A, to be between two numbers, p and q (p is less than q), we can write it as:
p < A < q
Similarly, here we need the velocity, -32t-10 to be BETWEEN -90 and - 58 (with -90 being the smaller number). Thus we can write:
–90 < –32t – 10 < –58
This is the correct choice, 2nd choice.
Two equations will not have solution if they are parallel and have different y-intercepts. Parallel lines have the same slope. In a slope-intercept form, the equation of the line can be expressed as,
y = mx + b
where m is slope and b is the y-intercept.
Given: 3x - 4y = 2
Slope-intercept: y = 3x/4 - 1/2
A. 2y = 1.5x - 2
Slope-intercept: y = 3x/4 - 1
B. 2y = 1.5x - 1
Slope-intercept: y = 3x/4 - 1/2
C. 3x + 4y = 2
Slope-intercept: y = -3x/4 + 1/2
D. -4y + 3x = -2
Slope-intercept: y = 3x/4 + 1/2
Hence, the answers to this item are A and D.
Try this option (see the attachment), if it is possible check result in other sources.
One thousand seventy two point thirty nine thousandths.
Answer:
P(working product) = .99*.99*.96*.96 = .0.903
Step-by-step explanation:
For the product to work, all four probabilities must come to pass, so that
P(Part-1)*P(Part-2)*P(Part-3)*P(Part-4)
where
P(Part-1) = 0.96
P(Part-2) = 0.96
P(Part-3) = 0.99
P(Part-4) = 0.99
As all parts are independent, so the formula is P(A∩B) = P(A)*P(B)
P (Working Product) = P(Part-1)*P(Part-2)*P(Part-3)*P(Part-4)
P (Working Product) = 0.96*0.96*0.96*0.99*0.99
P(Working Product) = 0.903