b) Equal to 243 N.
Explanation:
The total force acting on the car in the opposite direction including the road friction and air resistance is equal to 243 N.
This is in conformity with newton's third law of motion.
Newton's third law of motion states that "action and reaction are equal and opposite in direction. "
- The action force is that of the pull by Harry acting on the car.
- The reaction force is in the opposite direction.
- Both action and reaction force equal and opposite and magnitude and direction
learn more:
Newton's laws brainly.com/question/11411375
#learnwithBrainly
Given:
Ca = 3Cb (1)
where
Ca = heat capacity of object A
Cb = heat capacity f object B
Also,
Ta = 2Tb (2)
where
Ta = initial temperature of object A
Tb = initial temperature of object B.
Let
Tf = final equilibrium temperature of both objects,
Ma = mass of object A,
Mb = mass of object B.
Assuming that all heat exchange occurs exclusively between the two objects, then energy balance requires that
Ma*Ca*(Ta - Tf) = Mb*Cb*(Tf - Tb) (3)
Substitute (1) and (2) into (3).
Ma*(3Cb)*(2Tb - Tf) = Mb*Cb*(Tf - Tb)
3(Ma/Mb)*(2Tb - Tf) = Tf - Tb
Define k = Ma/Mb, the ratio f the masses.
Then
3k(2Tb - Tf) = Tf - Tb
Tf(1+3k) = Tb(1+6k)
Tf = [(1+6k)/(1+3k)]*Tb
Answer:

where
Answer:
43.58 m
Explanation:
If you travel 500 m on a straight road that slopes upward at a constant angle of 5 degrees
Using trigonometry ratio
Sin 5 = opposite/hypothenus
Where the hypothenus = 500m
Opposite = height h
Sin 5 = h/500
Cross multiply
500 × sin 5 = h
h = 500 × 0.08715
h = 43.58m
Therefore, the height above the starting point is equal to 43.58m
Answer:
514 cal
Explanation:
In order to calculate the lost heat by the amount of water you first take into account the following formula:
(1)
Q: heat lost by the amount of water = ?
m: mass of the water
c: specific heat of water = 1cal/g°C
T2: final temperature of water = 11°C
T1: initial temperature = 12°C
The amount of water is calculated by using the information about the density of water (1g/ml):

Then, you replace the values of all parameters in the equation (1):

The amount of water losses a heat of 514 cal
Answer:
The amplitude of the eardrum's oscillation is 6.65×10^-13 m.
Explanation:
Given data:
The sound has a frequency of 262 Hz
The sound level is 84 dB
The air density is 1.21 kg/m^3
The speed of sound is 346 m/s
Solution:
As, Intensity of sound is given by,
I = Io×10^(s/10 db)
I = 2×π^2×ρ×v×f^2×Sm^2
Thus,
Sm = √(Io×10^(s/10 db)) / √( 2×π^2×ρ×v×f^2)
Now, put the values,
Sm = √( 10^-12 × 10^(84/10) ) / √( 2×(3.14)^2×1.21×346×(262)^2 )
Sm = √(2.51×10^-4 / 5.66×10^8)
Sm = √0.443×10^-12
Sm = 6.65×10^-13 m.