Let the no. Of boys=x and that of girls=y.
The total no. Of students = x+y .
As given by statement the no. Of boys=x={(x+y)/3} + 5
This implies that
X=(x+y+15)/3
Also we know that x/y = 2/3 therefore
From this equation we get x=2y/3 and y=3x/2
By method of substitution we get
X=(x+3x/2+15)/3
•x=(15x+90)/2
•2x=15x+90
•-13x=90
X= -90/13
Now. Y= 3x/2=-270/26
Therefore total
no. Of students= -270/26+(-90/13)
•no. Of students= -450/26
According to me this is an imaginary question i mean how can their be a negative person
well if it asks you to send to 4 people and there are 8 generations which includes yours that mean
1 sent to 4 - 4 recived
4 send to 4 each = 16 recived + the 4 before = 20 (generation 2)
16 send to 4 = 64 + 20 = 84 (generation 3)
64 send to 4 = 256 + 84= 320 (g4)
256 send to 4 = 1024 + 320 = 1344 (g5)
1344 s t 4 = 5376 + 1344= 6730 (g6)
so on and so forth till generation 8
Answer:
0.108
Step-by-step explanation:
Using the poisson probability process :
Where :
P(x =x) = (e^-λ * λ^x) ÷ x!
Given that :
Each batch of bread = 3 loaves
Each loaf = 15 slices
Total slice per batch = 15 * 3 = 45 slices
Number of raising added = 100
Average number of raisin per slice, λ = 100/45 = 20/9
Hence,
Probability that a randomly chosen slice has no raising :
P(x = 0) = (e^-λ * λ^x) ÷ x!
P(x = 0) = (e^-(100/45) * (100/45)^0) ÷ 0!
P(x = 0) = (0.1083680 * 1) / 1
P(x = 0) = 0.108
Answer:
26.11% of women in the United States will wear a size 6 or smaller
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

In the United States, a woman's shoe size of 6 fits feet that are 22.4 centimeters long. What percentage of women in the United States will wear a size 6 or smaller?
This is the pvalue of Z when X = 22.4. So



has a pvalue of 0.2611
26.11% of women in the United States will wear a size 6 or smaller
Answer:
The intial value is 1.25
Step-by-step explanation: