Given:
Distance = 50 yard = 45.72 meter
Speed = 40 km/hr = 11.11 m/s
To find:
Time required by ball to reach the receiver = ?
Formula used:
speed = 
Solution:
The speed of the ball is given by,
speed = 
Thus,
Time = 
Distance = 50 yard = 45.72 meter
Speed = 40 km/hr = 11.11 m/s
Time = 4.12 second
Hence, ball reaches the receiver in 4.12 second.
If a galaxy is located 200 million light years from Earth, you can conclude that t<span>he light will take 200 million years to reach Earth. </span>
Answer:
d = 3.54 x 10⁴ Km
Explanation:
Given,
The distance between the two objects, r = 2.5 x 10⁴ Km
The gravitational force between them, F = 580 N
The gravitational force between the two objects is given by the formula
F = GMm/r² newton
When the gravitational force becomes half, then the distance between them becomes
Let us multiply the above equation by 1/2 on both sides
( 1/2) F = (1/2) GMm/r²
= GMm/2r²
= GMm/(√2r)²
Therefore, the distance becomes √2d, when the gravitational force between them becomes half
d = √2r = √2 x 2.5 x 10⁴ Km
= 3.54 x 10⁴ Km
Hence, the two objects should be kept at a distance, d = 3.54 x 10⁴ Km so that the gravitational force becomes half.
Explanation:
(a) Displacement of an object is the shortest path covered by it.
In this problem, a student is biking to school. She travels 0.7 km north, then realizes something has fallen out of her bag. She travels 0.3 km south to retrieve her item. She then travels 0.4 mi north to arrive at school.
0.4 miles = 0.64 km
displacement = 0.7-0.3+0.64 = 1.04 km
(b) Average velocity = total displacement/total time
t = 15 min = 0.25 hour

Hence, this is the required solution.
Answer:
Answer:
1.1 x 10^9 ohm metre
Explanation:
diameter = 1.5 mm
length, l = 5 cm
Potential difference, V = 9 V
current, i = 230 micro Ampere = 230 x 10^-6 A
radius, r = diameter / 2 = 1.5 / 2 = 0.75 x 10^-3 m
Let the resistivity is ρ.
Area of crossection
A = πr² = 3.14 x 0.75 x 0.75 x 10^-6 = 1.766 x 10^-6 m^2
Use Ohm's law to find the value of resistance
V = i x R
9 = 230 x 10^-6 x R
R = 39130.4 ohm
Use the formula for the resistance



ρ = 1.1 x 10^9 ohm metre
Explanation: