Setting reference frame so that the x axis is along the incline and y is perpendicular to the incline
<span>X: mgsin65 - F = mAx </span>
<span>Y: N - mgcos65 = 0 (N is the normal force on the incline) N = mgcos65 (which we knew) </span>
<span>Moment about center of mass: </span>
<span>Fr = Iα </span>
<span>Now Ax = rα </span>
<span>and F = umgcos65 </span>
<span>mgsin65 - umgcos65 = mrα -------------> gsin65 - ugcos65 = rα (this is the X equation m's cancel) </span>
<span>umgcos65(r) = 0.4mr^2(α) -----------> ugcos65(r) = 0.4r(rα) (This is the moment equation m's cancel) </span>
<span>ugcos65(r) = 0.4r(gsin65 - ugcos65) ( moment equation subbing in X equation for rα) </span>
<span>ugcos65 = 0.4(gsin65 - ugcos65) </span>
<span>1.4ugcos65 = 0.4gsin65 </span>
<span>1.4ucos65 = 0.4sin65 </span>
<span>u = 0.4sin65/1.4cos65 </span>
<span>u = 0.613 </span>
In the movement of the weight in vertical circle, using momentum balance, the largest tension is at the bottom of the circle. This is represented by:
<span>F = T - m g </span>
<span>T = F + m g
</span>F (centripetal) = mv^2/r
<span>= m v^2 / r + m g </span>
<span>m v^2 / r = T - m g </span>
<span>T= 0.5m * 100kgm/s^2 / 0.2kg - 9.81m/s^2 * 0.5m </span>
<span>T= 245 m^2/s^2 </span>
Answer:
980 J
Explanation:
The change in box's energy is equal to its change in gravitational potential energy:

where
m = 50 kg is the mass of the box
g = 9.8 m/s^2 is the acceleration due to gravity
is the change in height of the box
Substituting numbers, we find

Answer:
E. The ocean gains more entropy than the iron loses.
Explanation:
When there is a spontaneous process , entropy of the system increases . Here hot iron is losing entropy and ocean is gaining entropy . Net effect will be gain of entropy . That means entropy gained by ocean is more than entropy lost by iron .
Hence option E is correct .