They are considered malleable. They can be made into sheets
Happy to help! Please mark me as the brainliest!
The number of grams of Ag2SO4 that could be formed is 31.8 grams
<u><em> calculation</em></u>
Balanced equation is as below
2 AgNO3 (aq) + H2SO4(aq) → Ag2SO4 (s) +2 HNO3 (aq)
- Find the moles of each reactant by use of mole= mass/molar mass formula
that is moles of AgNO3= 34.7 g / 169.87 g/mol= 0.204 moles
moles of H2SO4 = 28.6 g/98 g/mol =0.292 moles
- use the mole ratio to determine the moles of Ag2SO4
that is;
- the mole ratio of AgNo3 : Ag2SO4 is 2:1 therefore the moles of Ag2SO4= 0.204 x1/2=0.102 moles
- The moles ratio of H2SO4 : Ag2SO4 is 1:1 therefore the moles of Ag2SO4 = 0.292 moles
- AgNO3 is the limiting reagent therefore the moles of Ag2SO4 = 0.102 moles
<h3> finally find the mass of Ag2SO4 by use of mass=mole x molar mass formula</h3>
that is 0.102 moles x 311.8 g/mol= 31.8 grams
Answer:
See explanation below for answers
Explanation:
We know that the balance is tared, so the innitial weight would be zero. Now, let's answer this by parts.
a) mass of displaced water.
In this case all we need to do is to substract the 0.70 with the 0.13 g. so:
mW = 0.70 - 0.13
mW = 0.57 g of water
b) Volume of water.
In this case, we have the density of water, so we use the formula for density and solve for volume:
d = m/V
V = m/d
Replacing:
Vw = 0.57/0.9982
Vw = 0.5710 mL of water
c) volume of the metal weight
In this case the volume would be the volume displaced of water, which would be 0.5710 mL
d) the mass of the metal weight.
In this case, it would be the mass when the metal weight hits the bottom which is 0.70 g
e) density.
using the above formula of density we calculate the density of the metal
d = 0.70 / 0.5710
d = 1.2259 g/mL
Answer is: in steel, the solvent is iron and the solute is the carbon.
Solution is homogeneous mixture composed of two or more substances.
In the solution, the solute molecules interact with solvent molecules.
Solvent (usually a liquid, but can also be a solid or a gas) is a substance that dissolves a solute. Iron is solvent because there is more iron than carbon and they are both solid state.
Solvent is always the same state of matter as the solution.
In ideal solution the forces of attraction between the solute-solute and the solvent-solvent and solute-solvent molecules are the same.