Answer:
B
Explanation:
Work done can be said to be positive if the applied force has a component to be in the direction of the displacement and when the angle between the applied force and displacement is positive.
In 1 and 2 work done is positive
Answer:
A) 12.08 m/s
B) 19.39 m/s
Explanation:
A) Down the hill, we will apply Newton’s second law of motion in the downward direction to get:
mg(sinθ) – F_k = ma
Where; F_k is frictional force due to kinetic friction given by the formula;
F_k = (μ_k) × F_n
F_n is normal force given by mgcosθ
Thus;
F_k = μ_k(mg cosθ)
We now have;
mg(sinθ) – μ_k(mg cosθ) = ma
Dividing through by m to get;
g(sinθ) – μ_k(g cosθ) = a
a = 9.8(sin 12.03) - 0.6(9.8 × cos 12.03)
a = -3.71 m/s²
We are told that distance d = 24.0 m and v_o = 18 m/s
Using newton's 3rd equation of motion, we have;
v = √(v_o² + 2ad)
v = √(18² + (2 × -3.71 × 24))
v = 12.08 m/s
B) Now, μ_k = 0.10
Thus;
a = 9.8(sin 12.03) - 0.1(9.8 × cos 12.03)
a = 1.08 m/s²
Using newton's 3rd equation of motion, we have;
v = √(v_o + 2ad)
v = √(18² + (2 × 1.08 × 24))
v = 19.39 m/s
Im guessing it's (a) since the numbers go in chronological order and you read the periodic table left to right
Answer:
V0=27.4 m/s; t=0.8 s
Explanation:
Final position y=37.0 m, time = 2.3 s; Initial position is set to be zero. We calculate the initial speed with the kinematics equation:
We solve for initial speed

Now, using the same expression we estimated time to first reach 18.5 m :
Second order equation with solutions
t1=0.8 s and t2=4.8 s
The first time corresponds to the first reach.
NOTE: The given question is incomplete.
<u>The complete question is given below.</u>
The human eye contains a molecule called 11-cis-retinal that changes conformation when struck with light of sufficient energy. The change in conformation triggers a series of events that results in an electrical signal being sent to the brain. The minimum energy required to change the conformation of 11-cis-retinal within the eye is about 164 kJ/mole. Calculate the longest wavelength visible to the human eye.
Solution:
Energy (E) = 164 kJ/mole
E = 164 kJ/mole = 164 kJ /6.023 x 10²³
= 2.72 x 10⁻²² kJ = 2.72 x 10⁻¹⁹J
Planck's constant = 6.6 x 10⁻³⁴ J s,
Speed of light = 3.00 x 10⁸ m/s
Let the required wavelength be λ.
Formula Used: E = hc / λ
or, λ = hc / E
or, λ = (6.6 x 10⁻³⁴ J s)× (3.00 x 10⁸ m/s) / (2.72 x 10⁻¹⁹J)
or, λ = 7.28 x 10⁻⁷ m
or, λ = (7.28 x 10⁻⁷ m) ×( 1.0 x 10⁹ nm / 1.0 m)
or, λ = (7.28 x 10² nm)
or, λ = 728 nm
Hence, the required wavelength will be 728 nm.