answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Step2247 [10]
1 year ago
11

According to Dr. paul Narguizian professor of Biology and Science Education at California State University, ______ are generaliz

ations about phenomena while ______ are explanations of phenomena.
A. Laws; theories
B. Conclusions; experiments
C. theories; laws
D. experiments; hypotheses
Physics
1 answer:
Mazyrski [523]1 year ago
3 0

Answer:

I believe the correct answer would be A :)

Explanation:

You might be interested in
A stock person at the local grocery store has a job consisting of the following five segments:
vaieri [72.5K]

Answer:

B

Explanation:

Work done can be said to be positive if the applied force has a component to be in the direction of the displacement and when the angle between the applied force and displacement is positive.

In 1 and 2 work done is positive

6 0
2 years ago
You testify as an expert witness in a case involving an accident in which car A slid into the rear of car B, which was stopped a
bekas [8.4K]

Answer:

A) 12.08 m/s

B) 19.39 m/s

Explanation:

A) Down the hill, we will apply Newton’s second law of motion in the downward direction to get:

mg(sinθ) – F_k = ma

Where; F_k is frictional force due to kinetic friction given by the formula;

F_k = (μ_k) × F_n

F_n is normal force given by mgcosθ

Thus;

F_k = μ_k(mg cosθ)

We now have;

mg(sinθ) – μ_k(mg cosθ) = ma

Dividing through by m to get;

g(sinθ) – μ_k(g cosθ) = a

a = 9.8(sin 12.03) - 0.6(9.8 × cos 12.03)

a = -3.71 m/s²

We are told that distance d = 24.0 m and v_o = 18 m/s

Using newton's 3rd equation of motion, we have;

v = √(v_o² + 2ad)

v = √(18² + (2 × -3.71 × 24))

v = 12.08 m/s

B) Now, μ_k = 0.10

Thus;

a = 9.8(sin 12.03) - 0.1(9.8 × cos 12.03)

a = 1.08 m/s²

Using newton's 3rd equation of motion, we have;

v = √(v_o + 2ad)

v = √(18² + (2 × 1.08 × 24))

v = 19.39 m/s

6 0
2 years ago
For metalloids on the periodic table, how do the group number and the period number relate?
lapo4ka [179]
Im guessing it's (a) since the numbers go in chronological order and you read the periodic table left to right
3 0
2 years ago
Read 2 more answers
A boy uses a slingshot to launch a pebble straight up into the air. The pebble reaches a height of 37.0 m above the launch point
denis-greek [22]

Answer:

V0=27.4 m/s; t=0.8 s

Explanation:

Final position y=37.0 m, time = 2.3 s; Initial position is set to be zero. We calculate the initial speed with the kinematics equation:

y_f=v_0t-0.5*g*t^2 We solve for initial speed

v_0=\frac{y_f+0.5gt^2}{t}=\frac{37+4.9*2.3^2}{2.3}=27.4m/s

Now, using the same expression we estimated time to first reach 18.5 m :

18.5=27.4t-4.9t^2 Second order equation with solutions

t1=0.8 s and t2=4.8 s

The first time corresponds to the first reach.

7 0
2 years ago
Calculate the longest wavelength visible to the human eye. express the wavelength in nanometers to three significant figures.
slega [8]

NOTE: The given question is incomplete.

<u>The complete question is given below.</u>

The human eye contains a molecule called 11-cis-retinal that changes conformation when struck with light of sufficient energy. The change in conformation triggers a series of events that results in an electrical signal being sent to the brain. The minimum energy required to change the conformation of 11-cis-retinal within the eye is about 164 kJ/mole. Calculate the longest wavelength visible to the human eye.

Solution:

Energy (E) = 164 kJ/mole

             E = 164 kJ/mole = 164 kJ /6.023 x 10²³

                = 2.72 x 10⁻²² kJ = 2.72 x 10⁻¹⁹J

Planck's constant = 6.6 x 10⁻³⁴ J s,

Speed of light = 3.00 x 10⁸ m/s

Let the required wavelength be λ.

Formula Used: E = hc / λ

or,                  λ = hc / E

or,                  λ = (6.6 x 10⁻³⁴ J s)× (3.00 x 10⁸ m/s) / (2.72 x 10⁻¹⁹J)

or,                  λ = 7.28 x 10⁻⁷ m

or,                  λ = (7.28 x 10⁻⁷ m) ×( 1.0 x 10⁹ nm / 1.0 m)

or,                  λ = (7.28 x 10² nm)

or,                  λ = 728 nm

Hence, the required wavelength will be 728 nm.

6 0
2 years ago
Other questions:
  • Find the moments Mx and My and the center of mass of the system, assuming that the particles have equal mass m.
    7·1 answer
  • When the metallic body of a car is moved into a painting chamber, a mist of electrically neutral paint is sprayed around the car
    12·1 answer
  • Write a hypothesis about the effect of increasing voltage on the current in the circuit. Use the "if . . . then . . . because .
    10·2 answers
  • A projectile has an initial horizontal velocity of 15 meters per second and an initial vertical velocity of 25 meters per second
    12·1 answer
  • What is the Physics Primer?
    15·2 answers
  • In a power plant, pipes transporting superheated vapor are very common. Superheated vapor flows at a rate of 0.3 kg/s inside a p
    6·1 answer
  • A gas in a piston–cylinder assembly undergoes a compression process for which the relation between pressure and volume is given
    7·1 answer
  • For this exercise, use the position function s(t) = −4.9t2 + 250, which gives the height (in meters) of an object that has falle
    10·1 answer
  • a rectangular coil of 25 loops is suspended in a field of 0.20wb/m2.the plane of coil is parallel to the direction of the field
    7·1 answer
  • Two bars are conducting heat from a region of higher temperature to a region of lower temperature. The bars have identical lengt
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!