answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
34kurt
1 year ago
12

Which of the following types of protective equipment protects workers who are passing by from stray sparks or metal while anothe

r worker is welding?
A. Visors
B. Goggles
C. Protective Clothing
D. Dark Walls
E. Welding Screens
Engineering
1 answer:
lawyer [7]1 year ago
4 0

A protective equipment which protects workers who are passing by from stray sparks or metal while another worker is welding is: E. Welding Screens.

A wielder refers to an individual who is saddled with responsibility of joining two or more metals together by wielding.

During the process of wielding, sparks and minute metallic objects are produced, which are usually hazardous to both the wielder and other workers within the vicinity.

Hence, the following protective equipment are meant to be worn or used directly by a wielder (worker) who is wielding:

  • Visors.
  • Goggles.
  • Protective clothing.
  • Dark walls.

However, a protective equipment which protects other workers who are passing by from stray sparks or metallic objects while wielder (worker) is welding is referred to as welding screens.

Find more information: brainly.com/question/15442363

You might be interested in
A circular ceramic plate that can be modeled as a blackbody is being heated by an electrical heater. The plate is 30 cm in diame
denis23 [38]

Answer:

Q = 125.538 W

Explanation:

Given data:

D = 30 cm

Temperature T_\infity = 15 degree celcius

T_S =  220 + 273 = 473 K

Heat coefficient = 12 W/m^2 K

Efficiency 80% = 0.8

Q = hA(T_S - T_{\infty}) \eta

= 12(\frac{\pi}{4} 0.3^2) (473 - 288) 0.8

Q = 125.538 W

5 0
2 years ago
You are the scheduler for a large commercial building project. The schedule that you prepared (based on feedback from the projec
guapka [62]

Answer:

The summary of the given question is summarized in the explanation section below.

Explanation:

  • Versus six days each week and ten hrs of work a day including all contracting companies as well as every other process, this same current acceleration account provides lower.
  • Unless the suggested acceleration strategy is chosen, the necessary timing encoding will be user-friendly such essential operations.
  • Rather some essential route operations throughout the current acceleration strategy will necessitate increased funding.
  • It does not overload the majority of that same capital.
6 0
2 years ago
A steady tensile load of 5.00kN is applied to a square bar, 12mm on a side and having a length of 1.65m. compute the stress in t
Shtirlitz [24]

Answer:

The stress in the bar is 34.72 MPa.

The design factor (DF) for each case is:

A) DF=0.17

B) DF=0.09

C) DF=0.125

D) DF=0.12

E) DF=0.039

F) DF=1.26

G) DF=5.5

Explanation:

The design factor is the relation between design stress and failure stress. In the case of ductile materials like metals, the failure stress considered is the yield stress. In the case of plastics or ceramics, the failure stress considered is the breaking stress (ultimate stress). If the design factor is less than 1, the structure or bar will endure the applied stress. By the opposite side, when the DF is higher than 1, the structure will collapse or the bar will break.

we will calculate the design stress in this case:

\displaystyle \sigma_{dis}=\frac{T_l}{Sup}=\frac{5.00KN}{(12\cdot10^{-3}m)^2}=34.72MPa

The design factor for metals is:

DF=\displaystyle \frac{\sigma_{dis}}{\sigma_{f}}=\frac{\sigma_{dis}}{\sigma_{y}}

The design factor for plastic and ceramics is:

DF=\displaystyle \frac{\sigma_{dis}}{\sigma_{f}}=\frac{\sigma_{dis}}{\sigma_{u}}

We now need to know the yield stress or the ultimate stress for each material. We use the AISI and ASTM charts for steels, materials charts for non-ferrous materials and plastics safety charts for the plastic materials.

For these cases:

A) The yield stress of AISI 120 hot-rolled steel (actually is AISI 1020) is 205 MPa, therefore:

DF=\displaystyle\frac{34.72MPa}{205MPa}=0.17

B) The yield stress of AISI 8650 OQT 1000 steel is 385 MPa, therefore:

DF=\displaystyle\frac{34.72MPa}{385MPa}=0.09

C) The yield stress of ductile iron A536-84 (60-40-18) is 40Kpsi, this is 275.8 MPa, therefore:

DF=\displaystyle\frac{34.72MPa}{275.8MPa}=0.125

D) The yield stress of aluminum allot 6061-T6 is 290 MPa, therefore:

DF=\displaystyle\frac{34.72MPa}{290MPa}=0.12

E) The yield stress of titanium alloy Ti-6Al-4V annealed (certified by manufacturers) is 880 MPa, therefore:

DF=\displaystyle\frac{34.72MPa}{880MPa}=0.039

F) The ultimate stress of rigid PVC plastic (certified by PVC Pipe Association) is 4Kpsi or 27.58 MPa, therefore:

DF=\displaystyle\frac{34.72MPa}{27.58 MPa}=1.26

In this case, the bar will break.

F) You have to consider that phenolic plastics are used as matrix in composite materials and seldom are used alone with no reinforcement. In this question is not explained if this material is reinforced or not, therefore I will use the ultimate stress of most pure phenolic plastics, in this case, 6.31 MPa:

DF=\displaystyle\frac{34.72MPa}{6.31 MPa}=5.5

This material will break.

3 0
2 years ago
Find the largest number. The process of finding the maximum value (i.e., the largest of a group of values) is used frequently in
salantis [7]

Answer:

See Explanation

Explanation:

Required

- Pseudocode to determine the largest of 10 numbers

- C# program to determine the largest of 10 numbers

The pseudocode and program makes use of a 1 dimensional array to accept input for the 10 numbers;

The largest of the 10 numbers is then saved in variable Largest and printed afterwards.

Pseudocode (Number lines are used for indentation to illustrate the program flow)

1. Start:

2. Declare Number as 1 dimensional array of 10 integers

3. Initialize: counter = 0

4. Do:

4.1 Display “Enter Number ”+(counter + 1)

4.2 Accept input for Number[counter]

4.3 While counter < 10

5. Initialize: Largest = Number[0]

6. Loop: i = 0 to 10

6.1 if Largest < Number[i] Then

6.2 Largest = Number[i]

6.3 End Loop:

7. Display “The largest input is “+Largest

8. Stop

C# Program (Console)

Comments are used for explanatory purpose

using System;

namespace ConsoleApplication1

{

   class Program

   {

       static void Main(string[] args)

       {

           int[] Number = new int[10];  // Declare array of 10 elements

           //Accept Input

           int counter = 0;

           while(counter<10)

           {

               Console.WriteLine("Enter Number " + (counter + 1)+": ");

               string var = Console.ReadLine();

               Number[counter] = Convert.ToInt32(var);

               counter++;                  

           }

           //Initialize largest to first element of the array

           int Largest = Number[0];

           //Determine Largest

           for(int i=0;i<10;i++)

           {

               if(Largest < Number[i])

               {

                   Largest = Number[i];

               }

           }

           //Print Largest

           Console.WriteLine("The largest input is "+ Largest);

           Console.ReadLine();

       }

   }

}

8 0
2 years ago
Small droplets of carbon tetrachloride at 68 °F are formed with a spray nozzle. If the average diameter of the droplets is 200 u
Licemer1 [7]

Answer:

the difference in pressure between the inside and outside of the droplets is 538 Pa

Explanation:

given data

temperature = 68 °F

average diameter = 200 µm

to find out

what is the difference in pressure between the inside and outside of the droplets

solution

we know here surface tension of carbon tetra chloride at 68 °F is get from table 1.6 physical properties of liquid that is

σ = 2.69 × 10^{-2} N/m

so average radius = \frac{diameter}{2} =  100 µm = 100 ×10^{-6} m

now here we know relation between pressure difference and surface tension

so we can derive difference pressure as

2π×σ×r = Δp×π×r²    .....................1

here r is radius and  Δp pressure difference and σ surface tension

Δp = \frac{2 \sigma }{r}    

put here value

Δp = \frac{2*2.69*10^{-2}}{100*10^{-6}}  

Δp = 538

so the difference in pressure between the inside and outside of the droplets is 538 Pa

7 0
2 years ago
Other questions:
  • A hydrogen-filled balloon to be used in high altitude atmosphere studies will eventually be 100 ft in diameter. At 150,000 ft, t
    7·1 answer
  • Which of the two materials (brittle vs. ductile) usually obtains the highest ultimate strength and why?
    5·1 answer
  • Sea water with a density of 1025 kg/m3 flows steadily through a pump at 0.21 m3 /s. The pump inlet is 0.25 m in diameter. At the
    8·1 answer
  • A piece of corroded metal alloy plate was found in a submerged ocean vessel. It was estimated that the original area of the plat
    6·1 answer
  • 15. A cold-chamber die-casting machine operates automatically, supported by two industrial robots.The machine produces two zinc
    9·2 answers
  • "It is necessary to select a metal alloy for an application that requires a yield strength of at least 345 MPa (50,000 psi) whil
    10·1 answer
  • Two airstreams are mixed steadily and adiabatically. The first stream enters at 35°C and 30 percent relative humidity at a rate
    6·1 answer
  • The device whose operation closely matches the way the clamp-on ammeter works is
    14·1 answer
  • A rectification column is fed 100 kg mol/h of a mixture of 50 mol % benzene and 50 mol % toluene at 101.32 kPa abs pressure. The
    5·1 answer
  • 1. A _____ is applied to a wall or roof rafters to add strength and keep the building straight and plumb.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!